Suppr超能文献

基于人工智能的冠状动脉CT血管造影评估在动脉粥样硬化个体化医疗中的应用:QCI研究组共识声明

Coronary CT angiography evaluation with artificial intelligence for individualized medical treatment of atherosclerosis: a Consensus Statement from the QCI Study Group.

作者信息

Schulze Kenrick, Stantien Anne-Marieke, Williams Michelle C, Vassiliou Vassilios S, Giannopoulos Andreas A, Nieman Koen, Maurovich-Horvat Pál, Tarkin Jason M, Vliegenthart Rozemarijn, Weir-McCall Jonathan, Mohamed Mahmoud, Föllmer Bernhard, Biavati Federico, Stahl Ann-Christine, Knape Jakob, Balogh Hanna, Galea Nicola, Išgum Ivana, Arbab-Zadeh Armin, Alkadhi Hatem, Manka Robert, Wood David A, Nicol Edward D, Nurmohamed Nick S, Martens Fabrice M A C, Dey Damini, Newby David E, Dewey Marc

机构信息

Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany.

British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK.

出版信息

Nat Rev Cardiol. 2025 Aug 1. doi: 10.1038/s41569-025-01191-6.

Abstract

Coronary CT angiography is widely implemented, with an estimated 2.2 million procedures in patients with stable chest pain every year in Europe alone. In parallel, artificial intelligence and machine learning are poised to transform coronary atherosclerotic plaque evaluation by improving reliability and speed. However, little is known about how to use coronary atherosclerosis imaging biomarkers to individualize recommendations for medical treatment. This Consensus Statement from the Quantitative Cardiovascular Imaging (QCI) Study Group outlines key recommendations derived from a three-step Delphi process that took place after the third international QCI Study Group meeting in September 2024. Experts from various fields of cardiovascular imaging agreed on the use of age-adjusted and gender-adjusted percentile curves, based on coronary plaque data from the DISCHARGE and SCOT-HEART trials. Two key issues were addressed: the need to harness the reliability and precision of artificial intelligence and machine learning tools and to tailor treatment on the basis of individualized plaque analysis. The QCI Study Group recommends that the presence of any atherosclerotic plaque should lead to a recommendation of pharmacological treatment, whereas the 70th percentile of total plaque volume warrants high-intensity treatment. The aim of these recommendations is to lay the groundwork for future trials and to unlock the potential of coronary CT angiography to improve patient outcomes globally.

摘要

冠状动脉CT血管造影术已广泛应用,仅在欧洲,每年就有估计220万例针对稳定型胸痛患者的该类检查。与此同时,人工智能和机器学习有望通过提高可靠性和速度来改变冠状动脉粥样硬化斑块的评估。然而,对于如何利用冠状动脉粥样硬化成像生物标志物来个性化医疗治疗建议,人们却知之甚少。这份来自定量心血管成像(QCI)研究小组的共识声明概述了关键建议,这些建议源自2024年9月第三次国际QCI研究小组会议之后进行的三步德尔菲法。心血管成像各领域的专家基于DISCHARGE和SCOT-HEART试验的冠状动脉斑块数据,就使用年龄和性别调整后的百分位数曲线达成了一致。解决了两个关键问题:需要利用人工智能和机器学习工具的可靠性和精确性,并根据个性化的斑块分析来调整治疗方案。QCI研究小组建议,任何动脉粥样硬化斑块的存在都应导致推荐药物治疗,而总斑块体积的第70百分位数则需要高强度治疗。这些建议的目的是为未来的试验奠定基础,并释放冠状动脉CT血管造影术在全球改善患者预后方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验