Jimenez-Lopez Celia, Garcia-Abuin Lucas, Fernandez-Megia Eduardo
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela 15782, Spain.
J Am Chem Soc. 2025 Aug 13;147(32):29457-29467. doi: 10.1021/jacs.5c09772. Epub 2025 Aug 2.
Bottom-up synthetic biology seeks to construct artificial cells with biomimetic or novel functionalities to uncover the fundamental principles of cellular evolution and drive advances in medicine and bioengineering. Among them, membranized coacervate microdroplets (MCM) uniquely combine a molecularly crowded aqueous interior with a surrounding membrane, both hallmarks of eukaryotic cells. Replicating cellular functions requires synthetic cells to remain structurally stable in biological environments, where ionic strength presents a significant threat to the integrity of complex coacervates. By leveraging the globular and rigid architecture of dendrimers, MCM, composed of oppositely charged small dendrimers and polypeptides─further stabilized by a charged PEG-dendritic copolymer assembled at the periphery─exhibits a critical salt concentration more than twice that of coacervates formed from polypeptides or branched polyelectrolytes with significantly higher degrees of polymerization. This highlights the enhanced robustness of dendritic MCM under physiological conditions and their suitability as synthetic cells in biological media. By mimicking key cell-like behavior such as efficient enzyme encapsulation (irrespective of the isoelectric point), fast internal dynamics, and chemical communication, dendritic MCM emerge as a promising synthetic cell platform for the selective delivery of therapeutic enzymes. In addition, their ability to engage in signal transduction pathways within synthetic-natural cell consortia, enabling responses to extracellular cues via chemical signaling, paves their way in tissue engineering and regenerative medicine.
自下而上的合成生物学旨在构建具有仿生或新功能的人工细胞,以揭示细胞进化的基本原理,并推动医学和生物工程的进步。其中,膜化凝聚微滴(MCM)独特地将分子拥挤的水性内部与周围的膜结合在一起,这两者都是真核细胞的特征。复制细胞功能要求合成细胞在生物环境中保持结构稳定,而离子强度对复杂凝聚物的完整性构成重大威胁。通过利用树枝状大分子的球状和刚性结构,由带相反电荷的小树枝状大分子和多肽组成的MCM(通过在外围组装的带电荷的聚乙二醇-树枝状共聚物进一步稳定)表现出的临界盐浓度是由多肽或具有显著更高聚合度的支化聚电解质形成的凝聚物的两倍多。这突出了树枝状MCM在生理条件下增强的稳健性及其作为生物介质中合成细胞的适用性。通过模拟关键的细胞样行为,如高效的酶包封(与等电点无关)、快速的内部动力学和化学通讯,树枝状MCM成为一种有前途的用于选择性递送治疗性酶的合成细胞平台。此外,它们能够参与合成-天然细胞聚集体内的信号转导途径,通过化学信号对细胞外线索做出反应,为它们在组织工程和再生医学中的应用铺平了道路。