Suppr超能文献

使用图神经网络整合功能磁共振成像时间序列的时域和频域特征用于阿尔茨海默病分类

Integrating Time and Frequency Domain Features of fMRI Time Series for Alzheimer's Disease Classification Using Graph Neural Networks.

作者信息

Peng Wei, Li Chunshan, Ma Yanhan, Dai Wei, Fu Dongxiao, Liu Li, Liu Lijun, Yu Ning, Liu Jin

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050, China.

Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, 650050, China.

出版信息

Interdiscip Sci. 2025 Aug 2. doi: 10.1007/s12539-025-00759-7.

Abstract

Accurate and early diagnosis of Alzheimer's Disease (AD) is crucial for timely interventions and treatment advancement. Functional Magnetic Resonance Imaging (fMRI), measuring brain blood-oxygen level changes over time, is a powerful AD-diagnosis tool. However, current fMRI-based AD diagnosis methods rely on noise-susceptible time-domain features and focus only on synchronous brain-region interactions in the same time phase, neglecting asynchronous ones. To overcome these issues, we propose Frequency-Time Fusion Graph Neural Network (FTF-GNN). It integrates frequency- and time-domain features for robust AD classification, considering both asynchronous and synchronous brain-region interactions. First, we construct a fully connected hypervariate graph, where nodes represent brain regions and their Blood Oxygen Level-Dependent (BOLD) values at a time series point. A Discrete Fourier Transform (DFT) transforms these BOLD values from the spatial to the frequency domain for frequency-component analysis. Second, a Fourier-based Graph Neural Network (FourierGNN) processes the frequency features to capture asynchronous brain region connectivity patterns. Third, these features are converted back to the time domain and reshaped into a matrix where rows represent brain regions and columns represent their frequency-domain features at each time point. Each brain region then fuses its frequency-domain features with position encoding along the time series, preserving temporal and spatial information. Next, we build a brain-region network based on synchronous BOLD value associations and input the brain-region network and the fused features into a Graph Convolutional Network (GCN) to capture synchronous brain region connectivity patterns. Finally, a fully connected network classifies the brain-region features. Experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate the method's effectiveness: Our model achieves 91.26% accuracy and 96.79% AUC in AD versus Normal Control (NC) classification, showing promising performance. For early-stage detection, it attains state-of-the-art performance in distinguishing NC from Late Mild Cognitive Impairment (LMCI) with 87.16% accuracy and 93.22% AUC. Notably, in the challenging task of differentiating LMCI from AD, FTF-GNN achieves optimal performance (85.30% accuracy, 94.56% AUC), while also delivering competitive results (77.40% accuracy, 91.17% AUC) in distinguishing Early MCI (EMCI) from LMCI-the most clinically complex subtype classification. These results indicate that leveraging complementary frequency- and time-domain information, along with considering asynchronous and synchronous brain-region interactions, can address existing approach limitations, offering a robust neuroimaging-based diagnostic solution.

摘要

准确且早期诊断阿尔茨海默病(AD)对于及时干预和推进治疗至关重要。功能磁共振成像(fMRI)通过测量大脑血氧水平随时间的变化,是一种强大的AD诊断工具。然而,当前基于fMRI的AD诊断方法依赖于易受噪声影响的时域特征,并且仅关注同一时间阶段的同步脑区交互,而忽略了异步交互。为了克服这些问题,我们提出了频率 - 时间融合图神经网络(FTF - GNN)。它整合了频域和时域特征以进行稳健的AD分类,同时考虑了异步和同步脑区交互。首先,我们构建一个全连接的多变量图,其中节点代表脑区及其在一个时间序列点的血氧水平依赖(BOLD)值。离散傅里叶变换(DFT)将这些BOLD值从空间域转换到频域以进行频率成分分析。其次,基于傅里叶的图神经网络(FourierGNN)处理频率特征以捕获异步脑区连接模式。第三,这些特征被转换回时域并重塑为一个矩阵,其中行代表脑区,列代表每个时间点的频域特征。然后每个脑区将其频域特征与沿时间序列的位置编码进行融合,保留时间和空间信息。接下来,我们基于同步BOLD值关联构建一个脑区网络,并将脑区网络和融合后的特征输入到图卷积网络(GCN)中以捕获同步脑区连接模式。最后,一个全连接网络对脑区特征进行分类。在阿尔茨海默病神经成像计划(ADNI)数据集上的实验证明了该方法的有效性:我们的模型在AD与正常对照(NC)分类中达到了91.26%的准确率和96.79%的曲线下面积(AUC),显示出有前景的性能。对于早期检测,在区分NC与晚期轻度认知障碍(LMCI)时,它达到了最先进的性能,准确率为87.16%,AUC为93.22%。值得注意的是,在区分LMCI与AD这一具有挑战性的任务中,FTF - GNN实现了最佳性能(准确率85.30%,AUC 94.56%),同时在区分早期轻度认知障碍(EMCI)与LMCI这一临床上最复杂的亚型分类中也给出了有竞争力的结果(准确率77.40%,AUC 91.17%)。这些结果表明,利用互补的频域和时域信息,以及考虑异步和同步脑区交互,可以解决现有方法的局限性,提供一种基于神经成像的稳健诊断解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验