Suppr超能文献

Epiregulon:用于预测药物反应和细胞状态驱动因素的单细胞转录因子活性推断

Epiregulon: Single-cell transcription factor activity inference to predict drug response and drivers of cell states.

作者信息

Włodarczyk Tomasz, Lun Aaron, Wu Diana, Shi Minyi, Ye Xiaofen, Menon Shreya, Toneyan Shushan, Seidel Kerstin, Wang Liang, Tan Jenille, Chen Shang-Yang, Keyes Timothy, Chlebowski Aleksander, Waddell Adrian, Zhou Wei, Wang Yangmeng, Yuan Qiuyue, Guo Yu, Chen Liang-Fu, Daniel Bence, Hafner Antonina, He Meng, Chibly Alejandro, Liang Yuxin, Duren Zhana, Metcalfe Ciara, Hafner Marc, Siebel Christian W, Corces M Ryan, Yauch Robert, Xie Shiqi, Yao Xiaosai

机构信息

gRED Computational Sciences, Genentech Inc, South San Francisco, CA, USA.

Discovery Oncology, Genentech Inc, South San Francisco, CA, USA.

出版信息

Nat Commun. 2025 Aug 2;16(1):7118. doi: 10.1038/s41467-025-62252-5.

Abstract

Transcription factors (TFs) and transcriptional coregulators are emerging therapeutic targets. Gene regulatory networks (GRNs) can evaluate pharmacological agents and identify drivers of disease, but methods that rely solely on gene expression often neglect post-transcriptional modulation of TFs. We present Epiregulon, a method that constructs GRNs from single-cell ATAC-seq and RNA-seq data for accurate prediction of TF activity. This is achieved by considering the co-occurrence of TF expression and chromatin accessibility at TF binding sites in each cell. ChIP-seq data allows motif-agonistic activity inference of transcriptional coregulators or TF harboring neomorphic mutations. Epiregulon accurately predicted the effects of AR inhibition across different drug modalities including an AR antagonist and an AR degrader, delineated the mechanisms of a SMARCA4 degrader by identifying context-dependent interaction partners, and prioritized drivers of lineage reprogramming and tumorigenesis. By mapping gene regulation across various cellular contexts, Epiregulon can accelerate the discovery of therapeutics targeting transcriptional regulators.

摘要

转录因子(TFs)和转录共调节因子正成为新兴的治疗靶点。基因调控网络(GRNs)可以评估药物制剂并识别疾病驱动因素,但仅依赖基因表达的方法往往忽略了转录因子的转录后调控。我们提出了Epiregulon,这是一种从单细胞ATAC测序和RNA测序数据构建基因调控网络的方法,用于准确预测转录因子活性。这是通过考虑每个细胞中转录因子结合位点处转录因子表达与染色质可及性的共现来实现的。ChIP-seq数据允许对转录共调节因子或携带新形态突变的转录因子进行基序激动活性推断。Epiregulon准确预测了包括AR拮抗剂和AR降解剂在内的不同药物模式下AR抑制的效果,通过识别上下文依赖的相互作用伙伴描绘了SMARCA4降解剂的作用机制,并对谱系重编程和肿瘤发生的驱动因素进行了优先级排序。通过绘制各种细胞环境中的基因调控图谱,Epiregulon可以加速针对转录调节因子的治疗药物的发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db5/12318008/14cc38001671/41467_2025_62252_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验