Suppr超能文献

慢性阻塞性肺疾病患者一年期非计划再入院预测列线图模型的开发与验证

Development and validation of a nomogram model for predicting one-year unplanned readmission in patients with chronic obstructive pulmonary disease.

作者信息

Zhu Jieyun, Lu Zhao, Song Qiuyun, Huang Chunli, Pan Dongzan, Cai Zhaoqiang, Ye Changguang, Shen Yin

机构信息

International Medical Department, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China.

Department of Respiratory and Critical Care Medicine, HePu People's Hospital, Hepu, 536100, People's Republic of China.

出版信息

Eur J Med Res. 2025 Aug 2;30(1):698. doi: 10.1186/s40001-025-02966-w.

Abstract

OBJECTIVE

The aim of this study was to investigate the influencing factors of unplanned readmission in patients with chronic obstructive pulmonary disease (COPD) within 1 year after discharge, construct a risk prediction model and evaluate its effect.

METHODS

In this prospective study, we included 719 individuals diagnosed with COPD, identify optimal predictors of unplanned readmission and developed a nomogram prediction model. The model's performance was assessed through receiver operator characteristic curves, calibration plots, and decision curve analysis.

RESULTS

Of 607 patients included in the final analysis, the incidence of readmission within one year was 40.0%. Multivariate regression analysis identified several risk factors for readmission: white blood cell count (WBC; OR = 1.07, 95% CI = 1.03-1.12, P = 0.002), disease duration over 10 years (OR = 1.36, 95% CI = 0.75-2.462, P = 0.043), the number of acute exacerbation in the past 1 year (OR = 1.12, 95% CI = 1.05-1.20, P = 0.001), and concurrent respiratory failure (OR = 1.50, 95% CI = 0.97-2.33, P = 0.047). The nomogram model based on these factors exhibited an AUC of 0.719 in the model group and 0.676 in the validation group. The calibration curve showed a good degree of fit, and the Hosmer-Lemeshow test confirmed no significant deviations in model fit (P > 0.05). The clinical decision curve demonstrated that both the model and the validation groups provided better net benefits than the treat-all tactics or the treat-none tactics with threshold probability values of 0.25-0.95 and 0.25-0.85.

CONCLUSION

The developed model, integrating WBC count, disease duration, number of acute exacerbations within the past year and concurrent respiratory failure, effectively predicts the risk of one-year unplanned readmission in patients with COPD.

摘要

目的

本研究旨在探讨慢性阻塞性肺疾病(COPD)患者出院后1年内非计划再入院的影响因素,构建风险预测模型并评估其效果。

方法

在这项前瞻性研究中,我们纳入了719例被诊断为COPD的个体,确定非计划再入院的最佳预测因素并开发了列线图预测模型。通过受试者操作特征曲线、校准图和决策曲线分析评估模型的性能。

结果

在最终分析纳入的607例患者中,1年内再入院发生率为40.0%。多因素回归分析确定了几个再入院的危险因素:白细胞计数(WBC;OR = 1.07,95%CI = 1.03 - 1.12,P = 0.002)、病程超过10年(OR = 1.36,95%CI = 0.75 - 2.462,P = 0.043)、过去1年急性加重次数(OR = 1.12,95%CI = 1.05 - 1.20,P = 0.001)以及并发呼吸衰竭(OR = 1.50,95%CI = 0.97 - 2.33,P = 0.047)。基于这些因素的列线图模型在模型组中的AUC为0.719,在验证组中为0.676。校准曲线显示拟合度良好,Hosmer-Lemeshow检验证实模型拟合无显著偏差(P > 0.05)。临床决策曲线表明,模型组和验证组在阈值概率值为0.25 - 0.95和0.25 - 0.85时,均比全治疗策略或全不治疗策略提供了更好的净效益。

结论

所开发的模型整合了白细胞计数、病程、过去1年急性加重次数和并发呼吸衰竭,能有效预测COPD患者1年内非计划再入院的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c20/12317506/b90d17a94439/40001_2025_2966_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验