Ogawa Takeshi, Aihara Takatsugu, Yamashita Okito
Cognitive Mechanisms Laboratories, Advanced Telecommunications Research Institute International, 2-2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan.
Neural Information Analysis Laboratories, Advanced Telecommunications Research Institute International, 2-2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan.
Sci Rep. 2025 Aug 2;15(1):28216. doi: 10.1038/s41598-025-13684-y.
Insight problem-solving is a creative cognitive process that involves overcoming mental impasses and discovering novel solutions. However, the neural mechanisms underlying insight, particularly in spatial manipulation task remain poorly understood. In this study, we investigated the brain dynamics involved in solving matchstick arithmetic problems, a type of spatial insight problem, using functional magnetic resonance imaging (fMRI). We applied two complementary analysis methods: (1) a general linear model (GLM) to identify brain regions associated with different problem-solving strategies (quick, analytical, and insight-based solutions), and (2) a hidden Markov model (HMM) to estimate discrete brain states during the problem-solving process. Our findings reveal that the default mode network (DMN) was more active during insight-based solutions than during quick and analytical strategies, whereas the executive control network (ECN) exhibited increased activation during quick and analytical solutions. These results suggest distinct roles for the DMN and ECN in spatial insight problem-solving. Additionally, we characterized specific brain states for each problem-solving strategy using HMM and examined their relationships with behavioral performance and state transitions. Our results suggest that insight problem-solving involves dynamic interactions between large-scale brain networks, with different strategies corresponding to different brain states. Notably, the high variability in brain state dynamics observed during the prolonged process of insight solutions may reflect increased cognitive flexibility. This study offers novel insights into the neural basis of spatial insight and its temporal dynamics.
顿悟式问题解决是一种创造性认知过程,涉及克服思维僵局并发现新颖的解决方案。然而,顿悟背后的神经机制,尤其是在空间操作任务中的神经机制,仍知之甚少。在本研究中,我们使用功能磁共振成像(fMRI)研究了解决火柴棍算术问题(一种空间顿悟问题)所涉及的脑动力学。我们应用了两种互补的分析方法:(1)一般线性模型(GLM)来识别与不同问题解决策略(快速、分析性和基于顿悟的解决方案)相关的脑区,以及(2)隐马尔可夫模型(HMM)来估计问题解决过程中的离散脑状态。我们的研究结果表明,默认模式网络(DMN)在基于顿悟的解决方案过程中比在快速和分析性策略过程中更活跃,而执行控制网络(ECN)在快速和分析性解决方案过程中表现出激活增加。这些结果表明DMN和ECN在空间顿悟问题解决中具有不同的作用。此外,我们使用HMM对每种问题解决策略的特定脑状态进行了特征描述,并研究了它们与行为表现和状态转换的关系。我们的结果表明,顿悟式问题解决涉及大规模脑网络之间的动态相互作用,不同的策略对应不同的脑状态。值得注意的是,在长时间的顿悟解决方案过程中观察到的脑状态动力学的高变异性可能反映了认知灵活性的增加。本研究为空间顿悟的神经基础及其时间动态提供了新的见解。