Nasralla Mazin, Laurent Harrison, Alderman Oliver L G, Dougan Lorna
School of Physics and Astronomy, University of Leeds, Leeds, UK.
ISIS Neutron and Muon Source, Harwell Campus, Didcot, UK.
Commun Chem. 2025 Aug 2;8(1):227. doi: 10.1038/s42004-025-01599-8.
In 2034, NASA Dragonfly will arrive at Titan's Selk crater to study an environment where molten ice has potentially interacted with organics. Some models suggest that Titan has a sub-surface ocean enriched in ammonia, a molecule that forms a deep eutectic with water, implying that it strongly perturbs water's intermolecular structure. In anticipation of the Dragonfly mission, and to understand the effects of the addition of ammonia to liquid water, we used neutrons to probe the structure of a 20.5 wt.% ammonia-water solution at 273 K and 298 K at 1 bar. We observed the formation of ice-like motifs in ammonia's hydration shell, a result reminiscent of the 'microscopic icebergs' predicted to form around methane and non-polar solutes that were a feature of the original hypothesis for the hydrophobic effect. This result may have implications for the aqueous chemistry of Titan and ammonia-rich ocean worlds.
2034年,美国国家航空航天局(NASA)的蜻蜓号将抵达土卫六的塞尔克撞击坑,以研究一个熔融冰可能与有机物相互作用的环境。一些模型表明,土卫六有一个富含氨的地下海洋,氨是一种能与水形成深度共晶的分子,这意味着它会强烈扰乱水的分子间结构。为了迎接蜻蜓号任务,并了解向液态水中添加氨的影响,我们利用中子在1巴压力下探测了273K和298K温度下20.5 wt.%氨水溶液的结构。我们观察到在氨的水合壳层中形成了类似冰的结构单元,这一结果让人联想到围绕甲烷和非极性溶质形成的“微观冰山”,这是疏水效应最初假设的一个特征。这一结果可能对土卫六和富含氨的海洋世界的水相化学有影响。