Liang Qianxi, Ren Wei, Jin Boya, Qiao Liang, Ge Xichuan, Fu Yunzhe, Lv Xiaoqi, Li Meiqi, Xi Peng
Department of Biomedical Engineering, National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China.
Airy Technologies Co. Ltd, Beijing, China.
Light Sci Appl. 2025 Aug 4;14(1):260. doi: 10.1038/s41377-025-01930-x.
Super-resolution imaging has revolutionized our ability to visualize biological structures at subcellular scales. However, deep-tissue super-resolution imaging remains constrained by background interference, which leads to limited depth penetration and compromised imaging fidelity. To overcome these challenges, we propose a novel imaging system, confocal² spinning-disk image scanning microscopy (CSD-ISM). It integrates a spinning-disk (SD) confocal microscope, which physically eliminates out-of-focus signals, forming the first confocal level. A digital micromirror device (DMD) is employed for sparse multifocal illumination, combined with a dynamic pinhole array pixel reassignment (DPA-PR) algorithm for ISM super-resolution reconstruction, forming the second confocal level. The dual confocal configuration enhances system resolution, while effectively mitigating scattering background interference. Compared to computational out-of-focus signal removal, SD preserves the original intensity distribution as the penetration depth increases, achieving an imaging depth of up to 180 μm. Additionally, the DPA-PR algorithm effectively corrects Stokes shifts, optical aberrations, and other non-ideal conditions, achieving a lateral resolution of 144 nm and an axial resolution of 351 nm, and a linear correlation of up to 92% between the original confocal and the reconstructed image, thereby enabling high-fidelity super-resolution imaging. Moreover, the system's programmable illumination via the DMD allows for seamless realization with structured illumination microscopy modality, offering excellent scalability and ease of use. Altogether, these capabilities make the CSD-ISM system a versatile tool, advancing cellular imaging and tissue-scale exploration for modern bioimaging needs.
超分辨率成像彻底改变了我们在亚细胞尺度下可视化生物结构的能力。然而,深层组织超分辨率成像仍然受到背景干扰的限制,这导致深度穿透受限和成像保真度受损。为了克服这些挑战,我们提出了一种新型成像系统,即共聚焦²转盘图像扫描显微镜(CSD-ISM)。它集成了一个转盘(SD)共聚焦显微镜,该显微镜从物理上消除了离焦信号,形成了第一个共聚焦层级。采用数字微镜器件(DMD)进行稀疏多焦点照明,并结合动态针孔阵列像素重分配(DPA-PR)算法进行ISM超分辨率重建,形成第二个共聚焦层级。这种双共聚焦配置提高了系统分辨率,同时有效减轻了散射背景干扰。与计算性离焦信号去除相比,随着穿透深度的增加,SD保留了原始强度分布,实现了高达180μm的成像深度。此外,DPA-PR算法有效地校正了斯托克斯位移、光学像差和其他非理想条件,实现了144nm的横向分辨率和351nm的轴向分辨率,并且原始共聚焦图像与重建图像之间的线性相关性高达92%,从而实现了高保真超分辨率成像。此外,该系统通过DMD进行的可编程照明允许与结构照明显微镜模式无缝实现,具有出色的可扩展性和易用性。总之,这些能力使CSD-ISM系统成为一种多功能工具,推动了细胞成像和组织尺度探索,以满足现代生物成像需求。