Suppr超能文献

利用多共焦图像扫描显微镜扩展生物体中的超分辨率成像多功能性。

Expanding super-resolution imaging versatility in organisms with multi-confocal image scanning microscopy.

作者信息

Ren Wei, Guan Meiling, Liang Qianxi, Li Meiqi, Jin Boya, Duan Guangxing, Zhang Liya, Ge Xichuan, Xu Hong, Hou Yiwei, Gao Baoxiang, Xi Peng

机构信息

Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.

National Biomedical Imaging Center, Peking University, Beijing 100871, China.

出版信息

Natl Sci Rev. 2024 Aug 27;11(9):nwae303. doi: 10.1093/nsr/nwae303. eCollection 2024 Sep.

Abstract

Resolving complex three-dimensional (3D) subcellular dynamics noninvasively in live tissues demands imaging tools that balance spatiotemporal resolution, field-of-view and phototoxicity. Image scanning microscopy (ISM), as an advancement of confocal laser scanning microscopy, provides a 2-fold 3D resolution enhancement. Nevertheless, the relatively low imaging speed has been the major obstacle for ISM to be further employed in imaging of biological tissues. Our proposed solution, multi-confocal image scanning microscopy (MC-ISM), aims to overcome the limitations of existing techniques in terms of spatiotemporal resolution balancing by optimizing pinhole diameter and pitch, eliminating out-of-focus signals, and introducing a frame reduction reconstruction algorithm. The imaging speed is increased by 16 times compared with multifocal structured illumination microscopy. We further propose a single-galvo scan, akin to the Archimedes spiral in spinning disk confocal systems, to ensure a high-speed and high-accuracy scan without the galvanometer's inertial motion. Benefitting from its high photon efficiency, MC-ISM allows continuous imaging of mitochondria dynamics in live cells for 1000 frames without apparent phototoxicity, reaching an imaging depth of 175 μm. Noteworthy, MC-ISM enables the observation of the inner membrane structure of living mitochondria in Arabidopsis hypocotyl for the first time, demonstrating its outstanding performance.

摘要

在活组织中以非侵入方式解析复杂的三维(3D)亚细胞动力学,需要成像工具在时空分辨率、视野和光毒性之间取得平衡。图像扫描显微镜(ISM)作为共聚焦激光扫描显微镜的一项进展,可将3D分辨率提高两倍。然而,相对较低的成像速度一直是ISM在生物组织成像中进一步应用的主要障碍。我们提出的解决方案,即多共聚焦图像扫描显微镜(MC-ISM),旨在通过优化针孔直径和间距、消除离焦信号并引入帧缩减重建算法,克服现有技术在时空分辨率平衡方面的局限性。与多焦点结构照明显微镜相比,成像速度提高了16倍。我们进一步提出一种类似于旋转盘共聚焦系统中的阿基米德螺旋的单振镜扫描方式,以确保在没有振镜惯性运动的情况下进行高速高精度扫描。得益于其高光子效率,MC-ISM能够对活细胞中的线粒体动力学进行连续1000帧成像且无明显光毒性,成像深度达到175μm。值得注意的是,MC-ISM首次实现了对拟南芥下胚轴中活线粒体内膜结构的观察,展示了其卓越性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e7/11879394/bccdfa2ab244/nwae303fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验