Steyn Nicholas, Parag Kris V
Department of Statistics, University of Oxford; MRC Centre for Global Infectious Disease Analysis, Imperial College London.
Am J Epidemiol. 2025 Aug 4. doi: 10.1093/aje/kwaf165.
The instantaneous reproduction number (${R}_t$) is a key measure of the rate of spread of an infectious disease. Correctly quantifying uncertainty in ${R}_t$ estimates is crucial for making well-informed decisions. Popular ${R}_t$ estimators leverage smoothing techniques to distinguish signal from noise. Examples include EpiEstim and EpiFilter, which are both controlled by a "smoothing parameter" that is traditionally selected by users. We demonstrate that the values of these smoothing parameters are unknown, vary markedly with epidemic dynamics, and show that data-driven smoothing is crucial for accurate uncertainty quantification of real-time ${R}_t$ estimates. We derive novel model likelihoods for the smoothing parameters in both EpiEstim and EpiFilter and develop a Bayesian framework to automatically marginalise these parameters when fitting to epidemiological time-series data. This yields marginal posterior predictive distributions which prove integral to rigorous model evaluation. Applying our methods, we find that default parameterisations of these widely-used estimators can negatively impact ${R}_t$ inference, delaying detection of epidemic growth, and misrepresenting uncertainty (typically producing overconfident estimates), with implications for public health decision-making. Our extensions mitigate these issues, provide a principled approach to uncertainty quantification, improve the robustness of real-time ${R}_t$ inference, and facilitate model comparison using observable quantities.
瞬时再生数(${R}_t$)是衡量传染病传播速度的关键指标。正确量化${R}_t$估计值中的不确定性对于做出明智决策至关重要。流行的${R}_t$估计器利用平滑技术来区分信号与噪声。例如EpiEstim和EpiFilter,它们都由用户传统上选择的“平滑参数”控制。我们证明这些平滑参数的值是未知的,会随着疫情动态显著变化,并表明数据驱动的平滑对于实时${R}_t$估计的准确不确定性量化至关重要。我们推导了EpiEstim和EpiFilter中平滑参数的新型模型似然性,并开发了一个贝叶斯框架,在拟合流行病学时间序列数据时自动边缘化这些参数。这产生了边际后验预测分布,事实证明这对于严格的模型评估不可或缺。应用我们的方法,我们发现这些广泛使用的估计器的默认参数化可能会对${R}_t$推断产生负面影响,延迟对疫情增长的检测,并错误表述不确定性(通常产生过度自信的估计),这对公共卫生决策有影响。我们的扩展减轻了这些问题,提供了一种有原则的不确定性量化方法,提高了实时${R}_t$推断的稳健性,并便于使用可观测数量进行模型比较。