Suppr超能文献

用于构建核壳结构硅@碳负极的溶解度差异驱动策略:嵌入铜纳米颗粒的氨辅助碳壳

Solubility-Difference-Driven Strategy for Constructing Core-Shell Structure Si@C Anodes: Ammonia-Assisted Carbon Shell Embedded with Copper Nanoparticles.

作者信息

Dong Yuanjiang, An Dan, Li Fei, Jin Huacheng, Li Baoqiang, Ma Xiaohong, Yao Mingshui, Yang Zongxian, Yuan Fangli

机构信息

State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.

School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.

出版信息

ACS Nano. 2025 Aug 12;19(31):28383-28396. doi: 10.1021/acsnano.5c06734. Epub 2025 Aug 3.

Abstract

Compounding with carbon materials is an effective strategy to mitigate the intrinsic challenges of silicon anodes, particularly their severe volume variation and poor electrical conductivity, thereby demonstrating significant potential for commercial lithium-ion battery applications. In this study, a solubility-difference-driven approach is proposed for constructing core-shell structured Si@C anodes. Utilizing the distinct solubility difference of poly(vinyl alcohol) and basic copper carbonate in ammonia-water and ethanol, a uniform carbon shell embedded with copper nanoparticles is successfully formed on the silicon surface (Si@C-3). The optimized Si@C-3 anode exhibits improved electrochemical performance, delivering a high reversible capacity of 1346.1 mAh g at 0.2 A g after 150 cycles. Moreover, the material also exhibits cyclic stability at a higher current density of 2 A g, retaining a capacity of 559.1 mAh g after 300 cycles. Notably, even under high-rate conditions of 6 A g, the anode maintains a capacity of 465.8 mAh g. These improved electrochemical performances are attributed to the stable electrode structure enabled by the well-coated carbon shell and enhanced electrode kinetic processes facilitated by the incorporated copper nanoparticles. This solubility-difference-driven strategy provides a feasible and scalable pathway for developing high-performance Si/C composite anodes for advanced lithium-ion batteries.

摘要

与碳材料复合是缓解硅负极固有挑战的有效策略,尤其是其严重的体积变化和较差的导电性,从而在商用锂离子电池应用中显示出巨大潜力。在本研究中,提出了一种基于溶解度差异驱动的方法来构建核壳结构的Si@C负极。利用聚乙烯醇和碱式碳酸铜在氨水和乙醇中的显著溶解度差异,在硅表面成功形成了嵌入铜纳米颗粒的均匀碳壳(Si@C-3)。优化后的Si@C-3负极表现出改善的电化学性能,在0.2 A g下循环150次后,可逆容量高达1346.1 mAh g。此外,该材料在2 A g的较高电流密度下也表现出循环稳定性,300次循环后容量保持在559.1 mAh g。值得注意的是,即使在6 A g的高倍率条件下,负极仍保持465.8 mAh g的容量。这些改善的电化学性能归因于良好包覆的碳壳所实现的稳定电极结构以及掺入的铜纳米颗粒所促进的电极动力学过程增强。这种溶解度差异驱动策略为开发用于先进锂离子电池的高性能Si/C复合负极提供了一条可行且可扩展的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验