Wang Z, Yu S, Zheng H, Tao J, Fan Y, Zhang X
Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
Beijing Da Xue Xue Bao Yi Xue Ban. 2025 Aug 18;57(4):684-691. doi: 10.19723/j.issn.1671-167X.2025.04.009.
OBJECTIVE: To analyze the clinical features associated with pelvic lymph node metastasis (PLNM) in prostate cancer and to construct a preoperative prediction model for PLNM, thereby reducing unnecessary extended pelvic lymph node dissection (ePLND). METHODS: Based on predefined inclusion and exclusion criteria, 344 patients who underwent radical prostatectomy and ePLND at the First Affiliated Hospital of Zhengzhou University between 2014 and 2024 were retrospectively enrolled, among whom, 77 patients (22.4%) were pathologically confirmed to have lymph node-positive disease. The clinical characteristics, MRI reports, and pathological results were collected. The data were then randomly divi-ded into a training cohort (241 cases, 70%) and a validation cohort (103 cases, 30%). Univariate and multivariate Logistic regression analysis were employed to construct a preoperative prediction model for PLNM. RESULTS: Univariate Logistic regression analysis revealed that total prostate specific antigen (tPSA) (=0.021), free prostate specific antigen (fPSA) (=0.002), fPSA to tPSA ratio (fPSA/tPSA) (=0.011), percentage of positive biopsy cores ( < 0.001), prostate imaging reporting and data system (PI-RADS) score (=0.004), biopsy Gleason score ≥8 (=0.005), clinical T stage ( < 0.001), and MRI-indicated lymph node involvement (MRI-LNI) ( < 0.001) were significant predictors of PLNM. Multivariate Logistic regression analysis demonstrated that the percentage of positive biopsy cores (=91.24, 95%: 13.34-968.68), PI-RADS score (=7.64, 95%: 1.78-138.06), and MRI-LNI (=4.67, 95%: 1.74-13.24) were independent risk factors for PLNM. And a novel nomogram for predicting PLNM was developed by integrating all these three variables. Compared with the individual predictors: percentage of positive biopsy cores [area under curve (AUC)=0.806], PI-RADS score (AUC=0.679), and MRI-LNI (AUC=0.768), the multivariate model incorporating all three variables demonstrated significantly superior predictive performance (AUC=0.883). Consistently, calibration curves and decision curve analyses confirmed that the multivariable model had high predictive accuracy and provided significant net clinical benefit relative to single-variable models. And using a cutoff of 6%, the multiparameter model missed only approximately 5.2% of PLNM cases (4/77), while reducing approximately 53% of ePLND procedures (139/267), demonstrating favorable predictive efficacy. CONCLUSION: Percentage of positive biopsy cores, PI-RADS score and MRI-LNI are independent risk factors for PLNM. The constructed multivariate model significantly improves predictive efficacy, offering a valuable tool to guide clinical decisions on ePLND.
目的:分析前列腺癌盆腔淋巴结转移(PLNM)相关的临床特征,并构建PLNM的术前预测模型,从而减少不必要的扩大盆腔淋巴结清扫术(ePLND)。 方法:根据预先定义的纳入和排除标准,回顾性纳入2014年至2024年期间在郑州大学第一附属医院接受根治性前列腺切除术和ePLND的344例患者,其中77例(22.4%)经病理证实有淋巴结阳性疾病。收集临床特征、MRI报告和病理结果。然后将数据随机分为训练队列(241例,70%)和验证队列(103例,30%)。采用单因素和多因素Logistic回归分析构建PLNM的术前预测模型。 结果:单因素Logistic回归分析显示,总前列腺特异性抗原(tPSA)(=0.021)、游离前列腺特异性抗原(fPSA)(=0.002)、fPSA与tPSA比值(fPSA/tPSA)(=0.011)、阳性活检核心百分比(<0.001)、前列腺影像报告和数据系统(PI-RADS)评分(=0.004)、活检Gleason评分≥8(=0.005)、临床T分期(<0.001)和MRI提示的淋巴结受累(MRI-LNI)(<0.001)是PLNM的显著预测因素。多因素Logistic回归分析表明,阳性活检核心百分比(=91.24,95%:13.34-968.68)、PI-RADS评分(=7.64,95%:1.78-138.06)和MRI-LNI(=4.67,95%:1.74-13.24)是PLNM的独立危险因素。通过整合这三个变量开发了一种新的预测PLNM的列线图。与单个预测因素相比:阳性活检核心百分比[曲线下面积(AUC)=0.806]、PI-RADS评分(AUC=0.679)和MRI-LNI(AUC=0.768),包含所有三个变量的多变量模型显示出显著优越的预测性能(AUC=0.883)。同样,校准曲线和决策曲线分析证实,多变量模型具有较高的预测准确性,相对于单变量模型提供了显著的净临床益处。使用6%的截断值,多参数模型仅漏诊了约5.2%的PLNM病例(4/77),同时减少了约53%的ePLND手术(139/267),显示出良好的预测效果。 结论:阳性活检核心百分比、PI-RADS评分和MRI-LNI是PLNM的独立危险因素。构建的多变量模型显著提高了预测效能,为指导ePLND的临床决策提供了有价值的工具。
Beijing Da Xue Xue Bao Yi Xue Ban. 2025-8-18
Zhonghua Nan Ke Xue. 2025-5
Eur Urol. 2009-6
Eur J Nucl Med Mol Imaging. 2025-4-2
World J Surg Oncol. 2024-2-26