Kang Chung-Chieh, Hung Tzu-Ming, Lu Shi-Ting, Lu Ta-Chung, Shih Chien-Chung
Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan.
J Am Chem Soc. 2025 Aug 13;147(32):29282-29291. doi: 10.1021/jacs.5c08831. Epub 2025 Aug 4.
The microstructure of conjugated polymers critically influences their mechanical and electronic properties. Reducing crystallinity is a common approach to improve stretchability but often leads to diminished chain aggregation, which impairs charge transport. To address this trade-off, we introduce a dipole modulation strategy to decouple aggregation from crystallinity in conjugated polymers. A series of dipole-tailored isomeric linkers (DTLs), namely, 2,6-DTL, 3,5-DTL, and 2,4-DTL, are synthesized by varying the position of an alkoxy substituent on a benzene core and flanked by thiophene units, yielding linkers with increasing dipole moments. These linkers are incorporated into a diketopyrrolopyrrole (DPP)-based polymer backbone to regulate dipole moment and chain packing. The PDPP-(2,4)-DTL polymer, whose linker possesses the highest dipole moment and most asymmetric geometry, exhibits reduced long-range crystallinity and enhanced short-range aggregation. This optimized microstructure leads to a 4-fold increase in crack onset strain and a 1.5-fold enhancement in field-effect mobility compared to the reference polymer. Subsequently, PDPP-(2,4)-DTL is blended with the nonfullerene acceptor Y7 to form the bulk heterojunction layer of a stretchable organic photodiode. The resulting device exhibits higher external quantum efficiency (EQE) and detectivity (*) relative to the control, maintains a * above 10 Jones under 80% strain, and retains a stable photoresponse after hundreds of stretching cycles. These findings highlight dipole modulation as an effective strategy to tailor polymer microstructure and simultaneously enhance mechanical and electronic properties.
共轭聚合物的微观结构对其机械和电子性能有着至关重要的影响。降低结晶度是提高拉伸性的常用方法,但往往会导致链聚集减少,从而损害电荷传输。为了解决这种权衡,我们引入了一种偶极调制策略,以在共轭聚合物中使聚集与结晶度解耦。通过改变苯环核心上烷氧基取代基的位置并在两侧连接噻吩单元,合成了一系列偶极定制的异构连接体(DTL),即2,6-DTL、3,5-DTL和2,4-DTL,得到了偶极矩增加的连接体。这些连接体被引入基于二酮吡咯并吡咯(DPP)的聚合物主链中,以调节偶极矩和链堆积。其连接体具有最高偶极矩和最不对称几何结构的PDPP-(2,4)-DTL聚合物,表现出降低的长程结晶度和增强的短程聚集。与参考聚合物相比,这种优化的微观结构使裂纹起始应变增加了4倍,场效应迁移率提高了1.5倍。随后,将PDPP-(2,4)-DTL与非富勒烯受体Y7混合,形成可拉伸有机光电二极管的本体异质结层。相对于对照,所得器件表现出更高的外量子效率(EQE)和探测率(),在80%应变下保持在10琼斯以上,并且在数百次拉伸循环后保持稳定的光响应。这些发现突出了偶极调制作为一种有效策略,可用于定制聚合物微观结构并同时增强机械和电子性能。