Suppr超能文献

深度学习用于未校正扫描透射电子显微镜中的亚埃分辨率成像。

Deep learning for sub-ångström-resolution imaging in uncorrected scanning transmission electron microscopy.

作者信息

Qiu Zanlin, Meng Yuan, Li Junxian, Hong Yanhui, Li Ning, Han Xiaocang, Liang Yu, Cheng Wing Ni, Ke Guolin, Zhang Linfeng, E Weinan, Zhao Xiaoxu, Zhang Jin

机构信息

School of Materials Science and Engineering, Peking University, Beijing 100871, China.

DP Technology, Beijing 100080, China.

出版信息

Natl Sci Rev. 2025 Jun 5;12(8):nwaf235. doi: 10.1093/nsr/nwaf235. eCollection 2025 Aug.

Abstract

Achieving sub-ångström resolution has long been restricted to sophisticated aberration-corrected scanning transmission electron microscopy (AC-STEM). Recent advances in computational super-resolution techniques, such as deconvolution and electron ptychography, have enabled uncorrected STEM to achieve sub-ångström resolution without the need for delicate aberration correctors. However, these methods have strict requirements for sample thickness and thus have yet to be widely implemented. In this study, we introduce SARDiffuse-a deep-learning diffusion model designed to enhance spatial resolution and correct the noise level of uncorrected STEM images. Trained with experimental AC-STEM data, SARDiffuse has the capability to restore high-frequency information of STEM images, enabling sub-ångström resolution in an uncorrected microscope. We demonstrate the effectiveness of the model on representative materials, including silicon, strontium titanate and gallium nitride, achieving substantial improvements (<1 Å) in spatial resolution. Detailed statistical analysis confirms that SARDiffuse reliably preserves atomic positions, demonstrating that it is a powerful tool for high-precision material characterization. Furthermore, SARDiffuse effectively mitigates spherical-aberration-induced artifacts, outperforming current methods in artifact correction. Meanwhile, the background information of images, such as thickness variation or carbon contamination distribution, is also preserved. This work highlights the potential of deep learning to realize sub-ångström-resolution imaging in the uncorrected electron microscope, offering a cost-effective alternative to delicate AC-STEM when imaging conventional single crystals.

摘要

长期以来,实现亚埃分辨率一直局限于复杂的像差校正扫描透射电子显微镜(AC-STEM)。反卷积和电子叠层成像等计算超分辨率技术的最新进展,使未校正的STEM能够在无需精密像差校正器的情况下实现亚埃分辨率。然而,这些方法对样品厚度有严格要求,因此尚未得到广泛应用。在本研究中,我们引入了SARDiffuse——一种深度学习扩散模型,旨在提高空间分辨率并校正未校正STEM图像的噪声水平。通过实验AC-STEM数据进行训练,SARDiffuse有能力恢复STEM图像的高频信息,从而在未校正的显微镜中实现亚埃分辨率。我们在包括硅、钛酸锶和氮化镓在内的代表性材料上证明了该模型的有效性,在空间分辨率上实现了大幅提升(<1 Å)。详细的统计分析证实,SARDiffuse能够可靠地保留原子位置,表明它是高精度材料表征的有力工具。此外,SARDiffuse有效地减轻了球差引起的伪像,在伪像校正方面优于当前方法。同时,图像的背景信息,如厚度变化或碳污染分布,也得以保留。这项工作突出了深度学习在未校正电子显微镜中实现亚埃分辨率成像的潜力,为常规单晶成像时提供了一种经济高效的替代精密AC-STEM的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14fc/12315106/bbf34771dd25/nwaf235fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验