Yang Wenfeng, Sha Haozhi, Cui Jizhe, Mao Liangze, Yu Rong
School of Materials Science and Engineering, Tsinghua University, Beijing, China.
MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, China.
Nat Nanotechnol. 2024 May;19(5):612-617. doi: 10.1038/s41565-023-01595-w. Epub 2024 Jan 29.
Technical advances paired with developments in methodology have enabled electron microscopy to reach atomic resolution. Further improving the information limit in microscopic imaging requires further improvements in methodology. Here we report a ptychographic method that describes the object as the sum of discrete atomic-orbital-like functions (for example, Gaussian functions) and the probe in terms of aberration functions. Using this method, we realize an improved information limit of microscopic imaging, reaching down to 14 pm. High-quality probes and objects contribute to superior signal-to-noise ratios at low electron doses, allowing for relaxation of the sample thickness restriction to 50 nm for dense materials. Additionally, our method has the capability to decompose the total phase into element components, revealing that the information limit is element dependent. With enhanced spatial resolution, signal-to-noise ratio and thickness threshold compared with conventional ptychography methods, our local-orbital ptychography may find applications in atomic-resolution imaging of metals, ceramics, electronic devices or beam-sensitive material.
技术进步与方法学的发展使电子显微镜能够达到原子分辨率。进一步提高显微成像中的信息极限需要在方法学上进一步改进。在此,我们报告一种叠层成像方法,该方法将物体描述为离散的类原子轨道函数(例如高斯函数)之和,并将探针用像差函数来描述。使用这种方法,我们实现了显微成像信息极限的改进,低至14皮米。高质量的探针和物体有助于在低电子剂量下获得优异的信噪比,从而使致密材料的样品厚度限制放宽至50纳米。此外,我们的方法有能力将总相位分解为元素分量,表明信息极限取决于元素。与传统叠层成像方法相比,我们的局部轨道叠层成像具有更高的空间分辨率、信噪比和厚度阈值,可能在金属、陶瓷、电子器件或对电子束敏感材料的原子分辨率成像中找到应用。