文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Diaproteo:一种基于蛋白质组学图谱的糖尿病早期检测监督学习框架。

Diaproteo: A supervised learning framework for early detection of diabetes mellitus based on proteomic profiles.

作者信息

Awan Hamza Shahab, Alturise Fahad, Alkhalifah Tamim, Khan Yaser Daanial

机构信息

Department of Computer Science, Comsats University Islamabad, Lahore, Pakistan.

Department of Computer Science, Lahore Garrison University, Lahore, Pakistan.

出版信息

Digit Health. 2025 Jul 30;11:20552076251362281. doi: 10.1177/20552076251362281. eCollection 2025 Jan-Dec.


DOI:10.1177/20552076251362281
PMID:40755961
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12317262/
Abstract

Diabetes mellitus (DM) is a chronic metabolic disease that affects millions of people worldwide, posing major health risks and financial challenges. Early diagnosis and treatment are essential for reducing complications and improving patient outcomes. This research explores the application of supervised algorithms to predict DM using a variety of datasets such as clinical features, genetic markers, and lifestyle variables. This study proposes novel approaches and evaluates prediction models with classic machine learning algorithms and cutting-edge deep learning architecture. Performance metrics (accuracy, precision, recall, F1 score) reveal that the Extra Trees model for the independent test and Convolutional Neural Network (CNN) for 10-fold cross-validation, achieving 91.52% accuracy with an F1 score of 0.91 (Extra Trees) and 87.03% accuracy with an F1 score of 84.82% (CNN). In addition, other evaluation indicators demonstrated that the Extra Trees algorithm outperformed others, achieving the highest accuracy on the independent test. Our study shows that machine learning and deep learning approaches may accurately predict DM, demonstrating the potential for early intervention and personalized healthcare strategies.

摘要

糖尿病(DM)是一种慢性代谢疾病,影响着全球数百万人,带来重大健康风险和经济挑战。早期诊断和治疗对于减少并发症和改善患者预后至关重要。本研究探索了监督算法在使用各种数据集(如临床特征、基因标记和生活方式变量)预测糖尿病方面的应用。本研究提出了新颖的方法,并使用经典机器学习算法和前沿深度学习架构评估预测模型。性能指标(准确率、精确率、召回率、F1分数)显示,独立测试的Extra Trees模型和10折交叉验证的卷积神经网络(CNN),Extra Trees模型准确率达到91.52%,F1分数为0.91;CNN准确率为87.03%,F1分数为84.82%。此外,其他评估指标表明,Extra Trees算法优于其他算法,在独立测试中达到了最高准确率。我们的研究表明,机器学习和深度学习方法可以准确预测糖尿病,显示出早期干预和个性化医疗策略的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/e538d7bdc662/10.1177_20552076251362281-fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/0ab3fb8fe743/10.1177_20552076251362281-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/c6e386dbc745/10.1177_20552076251362281-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/1aa895f01852/10.1177_20552076251362281-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/b2163425fb68/10.1177_20552076251362281-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/e77f2782abbc/10.1177_20552076251362281-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/933d8536218f/10.1177_20552076251362281-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/323a6b65a1fc/10.1177_20552076251362281-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/68f67bdc92f1/10.1177_20552076251362281-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/62575958f1a7/10.1177_20552076251362281-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/c80649998ce3/10.1177_20552076251362281-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/0b17e72a0b83/10.1177_20552076251362281-fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/9e75c4a4896f/10.1177_20552076251362281-fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/e538d7bdc662/10.1177_20552076251362281-fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/0ab3fb8fe743/10.1177_20552076251362281-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/c6e386dbc745/10.1177_20552076251362281-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/1aa895f01852/10.1177_20552076251362281-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/b2163425fb68/10.1177_20552076251362281-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/e77f2782abbc/10.1177_20552076251362281-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/933d8536218f/10.1177_20552076251362281-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/323a6b65a1fc/10.1177_20552076251362281-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/68f67bdc92f1/10.1177_20552076251362281-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/62575958f1a7/10.1177_20552076251362281-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/c80649998ce3/10.1177_20552076251362281-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/0b17e72a0b83/10.1177_20552076251362281-fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/9e75c4a4896f/10.1177_20552076251362281-fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/12317262/e538d7bdc662/10.1177_20552076251362281-fig13.jpg

相似文献

[1]
Diaproteo: A supervised learning framework for early detection of diabetes mellitus based on proteomic profiles.

Digit Health. 2025-7-30

[2]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[3]
Machine learning driven diabetes care using predictive-prescriptive analytics for personalized medication prescription.

Sci Rep. 2025-7-23

[4]
A Responsible Framework for Assessing, Selecting, and Explaining Machine Learning Models in Cardiovascular Disease Outcomes Among People With Type 2 Diabetes: Methodology and Validation Study.

JMIR Med Inform. 2025-6-27

[5]
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.

J Med Internet Res. 2025-5-26

[6]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[7]
Synergizing advanced algorithm of explainable artificial intelligence with hybrid model for enhanced brain tumor detection in healthcare.

Sci Rep. 2025-7-1

[8]
Proposal for Using AI to Assess Clinical Data Integrity and Generate Metadata: Algorithm Development and Validation.

JMIR Med Inform. 2025-6-30

[9]
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.

Comput Methods Programs Biomed. 2025-6-21

[10]
Predictive modeling of complications arising from early-onset preeclampsia in pregnant women.

Womens Health (Lond). 2025

本文引用的文献

[1]
PADG-Pred: Exploring Ensemble Approaches for Identifying Parkinson's Disease Associated Biomarkers Using Genomic Sequences Analysis.

IET Syst Biol. 2025

[2]
ESM-BBB-Pred: a fine-tuned ESM 2.0 and deep neural networks for the identification of blood-brain barrier peptides.

Brief Bioinform. 2024-11-22

[3]
eNSMBL-PASD: Spearheading early autism spectrum disorder detection through advanced genomic computational frameworks utilizing ensemble learning models.

Digit Health. 2025-1-27

[4]
Effect of diabetes and hyperglycaemia on the physical and mechanical properties of dentine: a systematic review.

Clin Oral Investig. 2025-1-10

[5]
Gluconeogenesis unraveled: A proteomic Odyssey with machine learning.

Methods. 2024-12

[6]
DeepDBS: Identification of DNA-binding sites in protein sequences by using deep representations and random forest.

Methods. 2024-11

[7]
A Computer-Aided Screening Solution for the Identification of Diabetic Neuropathy From Standing Balance by Leveraging Multi-Domain Features.

IEEE Trans Neural Syst Rehabil Eng. 2024

[8]
An intelligent model for prediction of abiotic stress-responsive microRNAs in plants using statistical moments based features and ensemble approaches.

Methods. 2024-8

[9]
Enhancing gestational diabetes mellitus risk assessment and treatment through GDMPredictor: a machine learning approach.

J Endocrinol Invest. 2024-9

[10]
Exploring metformin monotherapy response in Type-2 diabetes: Computational insights through clinical, genomic, and proteomic markers using machine learning algorithms.

Comput Biol Med. 2024-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索