Awan Hamza Shahab, Alturise Fahad, Alkhalifah Tamim, Khan Yaser Daanial
Department of Computer Science, Comsats University Islamabad, Lahore, Pakistan.
Department of Computer Science, Lahore Garrison University, Lahore, Pakistan.
Digit Health. 2025 Jul 30;11:20552076251362281. doi: 10.1177/20552076251362281. eCollection 2025 Jan-Dec.
Diabetes mellitus (DM) is a chronic metabolic disease that affects millions of people worldwide, posing major health risks and financial challenges. Early diagnosis and treatment are essential for reducing complications and improving patient outcomes. This research explores the application of supervised algorithms to predict DM using a variety of datasets such as clinical features, genetic markers, and lifestyle variables. This study proposes novel approaches and evaluates prediction models with classic machine learning algorithms and cutting-edge deep learning architecture. Performance metrics (accuracy, precision, recall, F1 score) reveal that the Extra Trees model for the independent test and Convolutional Neural Network (CNN) for 10-fold cross-validation, achieving 91.52% accuracy with an F1 score of 0.91 (Extra Trees) and 87.03% accuracy with an F1 score of 84.82% (CNN). In addition, other evaluation indicators demonstrated that the Extra Trees algorithm outperformed others, achieving the highest accuracy on the independent test. Our study shows that machine learning and deep learning approaches may accurately predict DM, demonstrating the potential for early intervention and personalized healthcare strategies.
糖尿病(DM)是一种慢性代谢疾病,影响着全球数百万人,带来重大健康风险和经济挑战。早期诊断和治疗对于减少并发症和改善患者预后至关重要。本研究探索了监督算法在使用各种数据集(如临床特征、基因标记和生活方式变量)预测糖尿病方面的应用。本研究提出了新颖的方法,并使用经典机器学习算法和前沿深度学习架构评估预测模型。性能指标(准确率、精确率、召回率、F1分数)显示,独立测试的Extra Trees模型和10折交叉验证的卷积神经网络(CNN),Extra Trees模型准确率达到91.52%,F1分数为0.91;CNN准确率为87.03%,F1分数为84.82%。此外,其他评估指标表明,Extra Trees算法优于其他算法,在独立测试中达到了最高准确率。我们的研究表明,机器学习和深度学习方法可以准确预测糖尿病,显示出早期干预和个性化医疗策略的潜力。
Comput Methods Programs Biomed. 2025-6-21
Womens Health (Lond). 2025
Clin Oral Investig. 2025-1-10
IEEE Trans Neural Syst Rehabil Eng. 2024