IEEE Trans Neural Syst Rehabil Eng. 2024;32:2388-2397. doi: 10.1109/TNSRE.2024.3419235. Epub 2024 Jul 3.
The early diagnosis of diabetic neuropathy (DN) is fundamental in order to enact timely therapeutic strategies for limiting disease progression. In this work, we explored the suitability of standing balance task for identifying the presence of DN. Further, we proposed two diagnosis pathways in order to succeed in distinguishing between different stages of the disease. We considered a cohort of non-neuropathic (NN), asymptomatic neuropathic (AN), and symptomatic neuropathic (SN) diabetic patients. From the center of pressure (COP), a series of features belonging to different description domains were extracted. In order to exploit the whole information retrievable from COP, a majority voting ensemble was applied to the output of classifiers trained separately on different COP components. The ensemble of kNN classifiers provided over 86% accuracy for the first diagnosis pathway, made by a 3-class classification task for distinguishing between NN, AN, and SN patients. The second pathway offered higher performances, with over 97% accuracy in identifying patients with symptomatic and asymptomatic neuropathy. Notably, in the last case, no asymptomatic patient went undetected. This work showed that properly leveraging all the information that can be mined from COP trajectory recorded during standing balance is effective for achieving reliable DN identification. This work is a step toward a clinical tool for neuropathy diagnosis, also in the early stages of the disease.
糖尿病神经病变(DN)的早期诊断对于及时采取治疗策略以限制疾病进展至关重要。在这项工作中,我们探讨了站立平衡任务在识别 DN 存在方面的适用性。此外,我们提出了两种诊断途径,以成功区分疾病的不同阶段。我们考虑了一组非神经病变(NN)、无症状神经病变(AN)和有症状神经病变(SN)的糖尿病患者。从压力中心(COP)中提取了一系列属于不同描述域的特征。为了利用从 COP 中可获取的全部信息,我们将多数投票集成应用于分别在不同 COP 分量上训练的分类器的输出。kNN 分类器的集成提供了超过 86%的准确性,用于区分 NN、AN 和 SN 患者的 3 类分类任务的第一个诊断途径。第二个途径提供了更高的性能,在识别有症状和无症状神经病变的患者时准确率超过 97%。值得注意的是,在后一种情况下,没有无症状患者被漏诊。这项工作表明,正确利用从站立平衡期间记录的 COP 轨迹中挖掘出的所有信息,对于实现可靠的 DN 识别是有效的。这项工作是朝着用于神经病诊断的临床工具迈出的一步,也可以用于疾病的早期阶段。