基于随机森林的模型在胃肠道恶性肿瘤预后评估中的应用:一项系统综述
The application of random forest-based models in prognostication of gastrointestinal tract malignancies: a systematic review.
作者信息
Mohamadi Zhina, Shafizadeh Ahmad, Aliyan Yasaman, Shayesteh Seyedeh Fatemeh, Goudarzi Parsa, Khodabandeh Alireza, Vaghari Amirali, Ashrafi Helma, Bahrami Omid, ZarinKhat Armin, Khodabandeh Yalda, Pouyan Kimia
机构信息
Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
出版信息
Front Artif Intell. 2025 Jul 18;8:1517670. doi: 10.3389/frai.2025.1517670. eCollection 2025.
INTRODUCTION
Malignancies of the GI tract account for one-third of cancer-related deaths globally and more than 25% of all cancer diagnoses. The rising prevalence of GI tract malignancies and the shortcomings of existing treatment approaches highlight the need for better predictive prediction models. RF's machine-learning method can predict cancers by using numerous decision trees to locate, classify, and forecast data. This systematic study aims to assess how well RF models predict the prognosis of GI tract malignancies.
METHODS
Following PRISMA criteria, we performed a systematic search in PubMed, Scopus, Google Scholar, and Web of Science until May 28, 2024. Studies used RF models to forecast the prognosis of GI tract malignancies, including esophageal, gastric, and colorectal cancers. The QUIPS approach was used to evaluate the quality of the included studies.
RESULTS
Out of 1846 records, 86 studies met inclusion requirements; eight were disqualified. Numerous studies showed that when combining clinical, genetic, and pathological data, RF models were very accurate and dependable in predicting the prognosis of GI tract malignancies, responses, recurrence, survival rates, and metastatic risks, distinguishing between operable and inoperable tumors, and patient outcomes. RF models outperformed conventional prognostic techniques in terms of accuracy; several research studies reported prediction accuracies of over 80% in survival rate estimates.
CONCLUSION
RF models, in terms of accuracy, performed better than the conventional approaches and provided better capabilities for clinical decision-making. Such models can increase the life quality and survival of patients by personalizing their treatment regimens for cancers of the GI tract. These models can, in a significant manner, raise patients' survival and quality of life through hastening clinical decision-making and providing personalized treatment options.
引言
胃肠道恶性肿瘤占全球癌症相关死亡人数的三分之一,占所有癌症诊断病例的25%以上。胃肠道恶性肿瘤患病率的上升以及现有治疗方法的不足凸显了对更好的预测模型的需求。随机森林(RF)的机器学习方法可以通过使用众多决策树来定位、分类和预测数据,从而预测癌症。本系统研究旨在评估随机森林模型预测胃肠道恶性肿瘤预后的效果。
方法
按照PRISMA标准,我们在PubMed、Scopus、谷歌学术和科学网进行了系统检索,直至2024年5月28日。研究使用随机森林模型预测胃肠道恶性肿瘤的预后,包括食管癌、胃癌和结直肠癌。采用QUIPS方法评估纳入研究的质量。
结果
在1846条记录中,86项研究符合纳入要求;8项被排除。众多研究表明,在结合临床、遗传和病理数据时,随机森林模型在预测胃肠道恶性肿瘤的预后、反应、复发、生存率和转移风险、区分可手术和不可手术肿瘤以及患者预后方面非常准确和可靠。随机森林模型在准确性方面优于传统预后技术;几项研究报告生存率估计的预测准确率超过80%。
结论
随机森林模型在准确性方面优于传统方法,并为临床决策提供了更好的能力。此类模型可以通过为胃肠道癌症患者个性化治疗方案来提高患者的生活质量和生存率。这些模型可以通过加快临床决策和提供个性化治疗方案,显著提高患者的生存率和生活质量。
相似文献
Health Technol Assess. 2006-9
Cochrane Database Syst Rev. 2022-9-26
Cochrane Database Syst Rev. 2017-12-22
Clin Orthop Relat Res. 2024-9-1
Cochrane Database Syst Rev. 2023-1-23
Cochrane Database Syst Rev. 2018-2-6
本文引用的文献
Comput Biol Med. 2024-9
Signal Transduct Target Ther. 2024-5-20
Cancer Immunol Immunother. 2024-5-2