Suppr超能文献

人工智能可解释性在食管癌治疗团队决策中的应用

Insights from explainable AI in oesophageal cancer team decisions.

机构信息

School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK.

Department of Statistics and Data Science, University of Texas at Austin, United States.

出版信息

Comput Biol Med. 2024 Sep;180:108978. doi: 10.1016/j.compbiomed.2024.108978. Epub 2024 Aug 5.

Abstract

BACKGROUND

Clinician-led quality control into oncological decision-making is crucial for optimising patient care. Explainable artificial intelligence (XAI) techniques provide data-driven approaches to unravel how clinical variables influence this decision-making. We applied global XAI techniques to examine the impact of key clinical decision-drivers when mapped by a machine learning (ML) model, on the likelihood of receiving different oesophageal cancer (OC) treatment modalities by the multidisciplinary team (MDT).

METHODS

Retrospective analysis of 893 OC patients managed between 2010 and 2022 at our tertiary unit, used a random forests (RF) classifier to predict four possible treatment pathways as determined by the MDT: neoadjuvant chemotherapy followed by surgery (NACT + S), neoadjuvant chemoradiotherapy followed by surgery (NACRT + S), surgery-alone, and palliative management. Variable importance and partial dependence (PD) analyses then examined the influence of targeted high-ranking clinical variables within the ML model on treatment decisions as a surrogate model of the MDT decision-making dynamic.

RESULTS

Amongst guideline-variables known to determine treatments, such as Tumour-Node-Metastasis (TNM) staging, age also proved highly important to the RF model (16.1 % of total importance) on variable importance analysis. PD subsequently revealed that predicted probabilities for all treatment modalities change significantly after 75 years (p < 0.001). Likelihood of surgery-alone and palliative therapies increased for patients aged 75-85yrs but lowered for NACT/NACRT. Performance status divided patients into two clusters which influenced all predicted outcomes in conjunction with age.

CONCLUSION

XAI techniques delineate the relationship between clinical factors and OC treatment decisions. These techniques identify advanced age as heavily influencing decisions based on our model with a greater role in patients with specific tumour characteristics. This study methodology provides the means for exploring conscious/subconscious bias and interrogating inconsistencies in team-based decision-making within the era of AI-driven decision support.

摘要

背景

临床医生主导的肿瘤决策质量控制对于优化患者护理至关重要。可解释人工智能 (XAI) 技术提供了数据驱动的方法来揭示临床变量如何影响这一决策过程。我们应用全局 XAI 技术来检查当机器学习 (ML) 模型映射时,关键临床决策驱动因素对多学科团队 (MDT) 接受不同食管癌 (OC) 治疗方式的可能性的影响。

方法

对 2010 年至 2022 年在我们的三级单位接受治疗的 893 名 OC 患者进行回顾性分析,使用随机森林 (RF) 分类器预测 MDT 确定的四种可能的治疗途径:新辅助化疗后手术 (NACT+S)、新辅助放化疗后手术 (NACRT+S)、手术单治和姑息治疗。然后,变量重要性和偏依赖 (PD) 分析检查了 ML 模型中靶向高排名临床变量对治疗决策的影响,作为 MDT 决策动态的替代模型。

结果

在确定治疗的指南变量中,肿瘤-淋巴结-转移 (TNM) 分期等因素的重要性很高,年龄在 RF 模型中的重要性也很高 (占总重要性的 16.1%)。偏依赖分析随后表明,所有治疗方式的预测概率在 75 岁后都有显著变化 (p<0.001)。75-85 岁的患者接受手术单治和姑息治疗的可能性增加,但接受 NACT/NACRT 的可能性降低。身体状况将患者分为两个亚群,与年龄一起影响所有预测结果。

结论

XAI 技术描绘了临床因素与 OC 治疗决策之间的关系。这些技术确定年龄是影响我们模型中决策的重要因素,对于具有特定肿瘤特征的患者,年龄的作用更大。本研究方法为探索人工智能驱动的决策支持时代的团队决策中的意识/无意识偏见和质疑不一致性提供了手段。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验