Lu Meiru, Qu Aihua, Huang Xue, Shi Tongguo, Chen Weichang, Xu Chuanlai, Kuang Hua, Zhang Guangbo
Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou 215006, China.
Acc Chem Res. 2025 Aug 19;58(16):2613-2626. doi: 10.1021/acs.accounts.5c00364. Epub 2025 Aug 4.
ConspectusInorganic nanomaterials typically exhibit a wide variety of structures with flexibility and versatile functional properties. The introduction of chirality can influence the physicochemical properties of materials, such as their size, shape, crystal structure, surface charge and optical activity. These properties can directly affect the fate of chiral inorganic nanomaterials. Given the inherent chirality and enantiomer selectivity of biological systems, there has been increasing interest in manipulating the chirality of nanomaterials to enhance biomolecular interactions and improve stability and target selectivity. This has led to remarkable advancements, establishing nanomaterial chirality as a highly innovative research domain. Based on controlling the synthesis of chiral nanomaterials, various design models can be developed for the regulation of diverse biological processes, thereby continuously contributing to the development of the next-generation chirality-based platforms toward nanobiomedicine.In this Account, we introduce recent advances and representative works on chiral inorganic nanomaterials, and summarize our efforts in this area. Initially, we highlight the design principles and fabrication strategies of chiral noble metals, chiral metal oxides, chiral inorganic semiconductors, and chiral metal hybrid nanomaterials, while analyzing the underlying origins of chirality in detail. We investigate the effects of various chiral molecules, circularly polarized light (CPL), and magnetic fields on chiral structures and chiral preferences. Furthermore, we outline emerging applications of such functional chiral inorganic nanomaterials in biomedical fields, including biosensing, biocatalysis, immune modulation, cellular behavior regulation, antibacterial effects, and disease theranostics. Chiral inorganic nanomaterials demonstrate enantioselective interactions with biological molecules (e.g., amino acids, peptides, DNA sequences, and proteins), and possess various responsive properties (e.g., redox, enzyme, light, and magnetic effects), playing crucial roles in the regulation of biological processes. Finally, we share our perspectives on the enduring challenges and future opportunities of this important and rapidly advancing field. It is envisioned that the precise design and controlled synthesis of chiral inorganic nanomaterials will facilitate the development of materials with advanced functional properties to meet the requirements of diverse emerging technologies.
综述
无机纳米材料通常呈现出多种多样的结构,具有灵活性和多功能特性。手性的引入可以影响材料的物理化学性质,如尺寸、形状、晶体结构、表面电荷和光学活性。这些性质可以直接影响手性无机纳米材料的命运。鉴于生物系统固有的手性和对映体选择性,人们越来越关注操纵纳米材料的手性以增强生物分子相互作用、提高稳定性和靶向选择性。这已经带来了显著的进展,将纳米材料手性确立为一个高度创新的研究领域。基于控制手性纳米材料的合成,可以开发各种设计模型来调节不同的生物过程,从而不断推动下一代基于手性的纳米生物医学平台的发展。
在本综述中,我们介绍了手性无机纳米材料的最新进展和代表性工作,并总结了我们在该领域的努力。首先,我们重点介绍手性贵金属、手性金属氧化物、手性无机半导体和手性金属杂化纳米材料的设计原理和制备策略,同时详细分析手性的潜在起源。我们研究了各种手性分子、圆偏振光(CPL)和磁场对手性结构和手性偏好的影响。此外,我们概述了这种功能性手性无机纳米材料在生物医学领域的新兴应用,包括生物传感、生物催化、免疫调节、细胞行为调控、抗菌作用和疾病诊疗。手性无机纳米材料表现出与生物分子(如氨基酸、肽、DNA序列和蛋白质)的对映选择性相互作用,并具有各种响应特性(如氧化还原、酶、光和磁效应),在生物过程的调节中发挥着关键作用。最后,我们分享了对这个重要且快速发展的领域所面临的持久挑战和未来机遇的看法。可以预见,手性无机纳米材料的精确设计和可控合成将有助于开发具有先进功能特性的材料,以满足各种新兴技术的需求。