Suppr超能文献

Unified Control of a Powered Knee-Ankle Prosthesis Enables Walking, Stairs, Transitions, and Other Daily Ambulation Activities.

作者信息

Sullivan Liam M, Cowan Marissa, Gabert Lukas, Lenzi Tommaso

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2025;33:3024-3039. doi: 10.1109/TNSRE.2025.3595496.

Abstract

Conventional passive prostheses for lower limb amputees lack active assistance and cannot replicate the natural energy dynamics of healthy limbs, resulting in compromised mobility and diminished quality of life. Powered lower-limb prostheses can theoretically replicate the biomechanical function of healthy limbs during ambulation. However, existing powered prostheses fall short of fully restoring mobility for individuals with above-knee amputations. This limitation is mainly due to existing controllers, which struggle to coordinate their assistance with the user's movements across a variety of activities in a natural manner. This paper proposes a novel unified controller for powered knee and ankle prostheses that enables multiple activities and adapts to users and the environment. The proposed controller enables natural ambulation without requiring explicit measurements of the environmental characteristics or classification of the intended ambulation task. In experiments with three amputee subjects, the proposed controller enabled walking on level, inclined, and uneven ground, ascending/descending stairs, sitting and standing, and seamless transitions between these activities. This work presents the first implementation of a unified, task-agnostic control strategy for continuous ambulation across everyday ambulation activities for powered knee and ankle prostheses.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d016/12447845/8610d7b594f5/nihms-2104034-f0001.jpg

相似文献

1
Unified Control of a Powered Knee-Ankle Prosthesis Enables Walking, Stairs, Transitions, and Other Daily Ambulation Activities.
IEEE Trans Neural Syst Rehabil Eng. 2025;33:3024-3039. doi: 10.1109/TNSRE.2025.3595496.
2
A Clinical Tuning Framework for Continuous Kinematic and Impedance Control of a Powered Knee-Ankle Prosthesis.
IEEE J Transl Eng Health Med. 2025 May 7;13:227-236. doi: 10.1109/JTEHM.2025.3567578. eCollection 2025.
3
Adapting Biomimetic Kinematics for Controlling a Powered-Knee, Passive-Ankle Prosthesis Across Inclines.
IEEE Int Conf Rehabil Robot. 2025 May;2025:228-234. doi: 10.1109/ICORR66766.2025.11063136.
4
Ambulation With a Transfemoral Bone-Anchored Powered Knee-Ankle Prosthesis: a Case Study.
IEEE Int Conf Rehabil Robot. 2025 May;2025:1-5. doi: 10.1109/ICORR66766.2025.11063207.
5
Investigating Kinematic and Kinetic Asymmetries During Sit/Stand Movements with a Powered Knee-Ankle Prosthesis: A Pilot Study.
IEEE Int Conf Rehabil Robot. 2025 May;2025:1388-1395. doi: 10.1109/ICORR66766.2025.11062956.
6
Design and Preliminary Evaluation of a Gait Control Strategy for Hip-Knee-Ankle-Foot Prostheses With Motorized Hip Joint.
IEEE Trans Neural Syst Rehabil Eng. 2025;33:3432-3442. doi: 10.1109/TNSRE.2025.3602715.
7
A Comparative Case Study of EMG-Driven Controllers in Transtibial Prostheses.
IEEE Trans Neural Syst Rehabil Eng. 2025;33:3388-3399. doi: 10.1109/TNSRE.2025.3602296.
8
Is Socket Flexion Alignment Associated With Changes in Gait Parameters in Individuals With an Above-knee Amputation and a Hip Flexion Contracture?
Clin Orthop Relat Res. 2025 Mar 1;483(3):535-546. doi: 10.1097/CORR.0000000000003288. Epub 2024 Nov 5.
10
Influencing factors on swing phase ground clearance in transfemoral prostheses - A biomechanical study.
Gait Posture. 2025 Oct;122:389-397. doi: 10.1016/j.gaitpost.2025.08.073. Epub 2025 Aug 26.

本文引用的文献

1
Ambilateral Activity Recognition and Continuous Adaptation with a Powered Knee-Ankle Prosthesis.
IEEE Trans Robot. 2025;41:2251-2267. doi: 10.1109/tro.2025.3539206. Epub 2025 Feb 5.
2
Controlling Powered Prosthesis Kinematics Over Continuous Inter-Leg Transitions Between Walking and Stair Ascent/Descent.
IEEE Trans Neural Syst Rehabil Eng. 2024;32:3891-3901. doi: 10.1109/TNSRE.2024.3485643. Epub 2024 Nov 5.
3
A Unified Controller for Natural Ambulation on Stairs and Level Ground with a Powered Robotic Knee Prosthesis.
Rep U S. 2023 Oct;2023:2146-2151. doi: 10.1109/iros55552.2023.10341691. Epub 2023 Dec 13.
4
Powered Knee and Ankle Prosthesis Control for Adaptive Ambulation at Variable Speeds, Inclines, and Uneven Terrains.
Rep U S. 2023 Oct;2023:2128-2133. doi: 10.1109/iros55552.2023.10342504. Epub 2023 Dec 13.
5
A low-power ankle-foot prosthesis for push-off enhancement.
Wearable Technol. 2023 Jun 15;4:e18. doi: 10.1017/wtc.2023.13. eCollection 2023.
6
Data-Driven Phase-Based Control of a Powered Knee-Ankle Prosthesis for Variable-Incline Stair Ascent and Descent.
IEEE Trans Med Robot Bionics. 2024 Feb;6(1):175-188. doi: 10.1109/tmrb.2023.3328656. Epub 2023 Oct 31.
7
Machine Learning-Based Gait Mode Prediction for Hybrid Knee Prosthesis Control.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-6. doi: 10.1109/EMBC40787.2023.10340388.
8
A Locomotion Mode Recognition Algorithm Using Adaptive Dynamic Movement Primitives.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:4318-4328. doi: 10.1109/TNSRE.2023.3327751. Epub 2023 Nov 7.
9
Neural prosthesis control restores near-normative neuromechanics in standing postural control.
Sci Robot. 2023 Oct 25;8(83):eadf5758. doi: 10.1126/scirobotics.adf5758. Epub 2023 Oct 18.
10
Improving Sit/Stand Loading Symmetry and Timing Through Unified Variable Impedance Control of a Powered Knee-Ankle Prosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:4146-4155. doi: 10.1109/TNSRE.2023.3320692. Epub 2023 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验