Ošlejšek Radek, Urbanová Petra, Sochor Jiří
Faculty of Informatics, Masaryk University, Brno, Czech Republic.
Faculty of Science, Masaryk University, Brno, Czech Republic.
PLoS One. 2025 Aug 4;20(8):e0329489. doi: 10.1371/journal.pone.0329489. eCollection 2025.
Using three-dimensional scans of human faces has become an emerging technique in studies of human variation, where the quantitative assessment of facial similarity complements the measurement of other somatic traits. While the algorithms for automated registration (geometrical alignment) and similarity measurement of two facial scans are well-known and used in practice, their direct application for batch processing is limited due to computational requirements. The batch N:N analysis, where all pairs of scans in a dataset must be mutually registered and compared, introduces quadratic complexity with computation times reaching hours even for relatively small datasets, making it practically unusable. This paper presents a rapid and accurate approach with nearly linear time complexity. Our solution utilizes properties of facial scan geometry to optimize individual steps. Moreover, the algorithm deals with possible holes and other artifacts in polygonal meshes automatically. Experiments demonstrate that the proposed solution is very fast and sufficiently accurate compared to a precise quadratic-time baseline approach.
使用人脸三维扫描已成为人类变异研究中的一项新兴技术,其中对面部相似度的定量评估补充了其他身体特征的测量。虽然用于自动配准(几何对齐)和两张面部扫描相似度测量的算法广为人知且在实践中得到应用,但由于计算需求,它们在批量处理中的直接应用受到限制。批量N:N分析要求数据集中的所有扫描对都必须相互配准并进行比较,这会带来二次复杂度,即使对于相对较小的数据集,计算时间也会达到数小时,实际上无法使用。本文提出了一种具有近乎线性时间复杂度的快速准确方法。我们的解决方案利用面部扫描几何的特性来优化各个步骤。此外,该算法会自动处理多边形网格中可能出现的空洞和其他伪影。实验表明,与精确的二次时间基线方法相比,所提出的解决方案速度非常快且足够准确。