Datta Ananya, Orallo Grace Kelly, Nelson Nahomy
New England College of Optometry Boston, Boston, Massachusetts, United States of America.
PLoS One. 2025 Aug 4;20(8):e0329112. doi: 10.1371/journal.pone.0329112. eCollection 2025.
Corneal sensory innervation plays a crucial role in maintaining ocular surface integrity and immune homeostasis by regulating neuropeptide secretion in tear fluid. Sensory dysfunction disrupts tear production and neuropeptide signaling, increasing susceptibility to microbial infections. However, the mechanistic link between sensory nerve suppression, neuropeptide depletion, and bacterial adhesion remains incompletely understood. This study establishes a refined protocol for targeted corneal sensory nerve suppression using bupivacaine, a long-acting local anesthetic, and investigates the roles of substance P (SP) and calcitonin gene-related peptide (CGRP) in modulating tear production and bacterial adhesion.
Male and female C57BL/6J (wild-type) mice (6-8 weeks old) were used to establish a localized and sustained corneal nerve suppression model via subconjunctival bupivacaine injection combined with topical application every other day for 15 days. This approach ensured precise modulation of corneal sensory function. Using this model, we investigated how sensory denervation influences microbial adhesion dynamics for Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis, three clinically relevant pathogens with distinct adhesion mechanisms. Bacterial inoculation was standardized using the Kimwipe blotting method to achieve uniform deposition onto the corneal surface, followed by quantification of bacterial adhesion. Tear production was assessed using SMTube testing to evaluate nerve depletion-associated alterations. Enzyme-linked immunosorbent assay (ELISA) was used to quantify SP and CGRP levels in tear fluid, determining whether their depletion correlated with increased bacterial adhesion and altered tear production. To assess whether neuropeptide restoration mitigates bacterial adhesion, SP, CGRP, or phosphate-buffered saline (PBS; control) was administered via subconjunctival injection prior to bupivacaine treatment on day 14 and 15 during the experimental timeline. All assessments, including nerve depletion effects on tear production, bacterial adhesion, and neuropeptide loss, were conducted on day 15 post-bupivacaine treatment.
Targeted corneal sensory denervation via combined subconjunctival and topical bupivacaine resulted in a ~ 50% reduction in corneal nerve density, achieving deeper and more localized nerve suppression compared to subconjunctival injection alone (P < 0.0001). This approach led to a 2.3-fold (~56.6%) reduction in tear production without inducing epithelial damage (P < 0.0001). This loss of sensory input led to a marked decrease in SP and CGRP levels in both the cornea and tear fluid, with the most pronounced reduction observed in the combined treatment group. Notably, neuropeptide depletion correlated with increased bacterial adhesion, with a ~ 1.18-fold increase for S. aureus and ~1.20-fold for P. aeruginosa, highlighting the critical role of corneal sensory nerves in modulating ocular surface immunity (P < 0.0001). Exogenous SP or CGRP supplementation restored neuropeptide levels and CGRP supplementation reversed bacterial adhesion, highlighting their critical function in maintaining antimicrobial defense.
This study establishes a novel, controlled model of corneal sensory denervation, revealing a direct link between neuropeptide depletion, impaired tear production, and increased microbial adhesion. By simulating neuropathic conditions such as diabetic keratopathy and neurotrophic keratitis, this approach provides a valuable framework for investigating neuroimmune interactions in ocular infections. Beyond infection models, this subconjunctival injection strategy serves as a versatile platform for studying ocular drug pharmacokinetics, neuroprotective interventions, and immune modulation.
角膜感觉神经支配通过调节泪液中的神经肽分泌,在维持眼表完整性和免疫稳态方面发挥关键作用。感觉功能障碍会破坏泪液分泌和神经肽信号传导,增加对微生物感染的易感性。然而,感觉神经抑制、神经肽耗竭与细菌黏附之间的机制联系仍未完全明确。本研究建立了一种使用长效局部麻醉药布比卡因进行靶向角膜感觉神经抑制的优化方案,并研究了P物质(SP)和降钙素基因相关肽(CGRP)在调节泪液分泌和细菌黏附中的作用。
使用6至8周龄的雄性和雌性C57BL/6J(野生型)小鼠,通过结膜下注射布比卡因并每隔一天局部应用一次,持续15天,建立局部和持续的角膜神经抑制模型。这种方法确保了对角膜感觉功能的精确调节。利用该模型,我们研究了感觉神经去支配如何影响铜绿假单胞菌、金黄色葡萄球菌和表皮葡萄球菌这三种具有不同黏附机制的临床相关病原体的微生物黏附动态。使用Kimwipe印迹法对细菌接种进行标准化,以实现细菌在角膜表面的均匀沉积,随后对细菌黏附进行定量分析。使用SMTube测试评估泪液分泌,以评估与神经耗竭相关的变化。采用酶联免疫吸附测定(ELISA)法对泪液中的SP和CGRP水平进行定量分析,确定它们的耗竭是否与细菌黏附增加和泪液分泌改变相关。为了评估神经肽恢复是否能减轻细菌黏附,在实验时间线的第14天和第15天,在布比卡因治疗前通过结膜下注射给予SP、CGRP或磷酸盐缓冲盐水(PBS;对照)。所有评估,包括神经耗竭对泪液分泌、细菌黏附和神经肽损失的影响,均在布比卡因治疗后的第15天进行。
通过结膜下和局部联合使用布比卡因进行靶向角膜感觉神经去支配,导致角膜神经密度降低约50%,与单独结膜下注射相比,实现了更深层次和更局部的神经抑制(P < 0.0001)。这种方法导致泪液分泌减少2.3倍(约56.6%),且未引起上皮损伤(P < 0.0001)。这种感觉输入的丧失导致角膜和泪液中SP和CGRP水平显著降低,联合治疗组中观察到的降低最为明显。值得注意的是,神经肽耗竭与细菌黏附增加相关,金黄色葡萄球菌增加约1.18倍,铜绿假单胞菌增加约1.20倍,突出了角膜感觉神经在调节眼表免疫中的关键作用(P < 0.0001)。外源性补充SP或CGRP可恢复神经肽水平,补充CGRP可逆转细菌黏附,突出了它们在维持抗菌防御中的关键功能。
本研究建立了一种新型的、可控的角膜感觉神经去支配模型,揭示了神经肽耗竭、泪液分泌受损和微生物黏附增加之间的直接联系。通过模拟糖尿病性角膜病变和神经营养性角膜炎等神经病变情况,该方法为研究眼部感染中的神经免疫相互作用提供了一个有价值的框架。除了感染模型外,这种结膜下注射策略还可作为一个通用平台,用于研究眼部药物药代动力学、神经保护干预和免疫调节。