Suppr超能文献

多对比度机器学习提高了血吸虫病的诊断性能。

Multi-contrast machine learning improves schistosomiasis diagnostic performance.

作者信息

Díaz de León Derby María, Delahunt Charles B, Spencer Ethan, Coulibaly Jean T, Silué Kigbafori D, Bogoch Isaac I, Le Ny Anne-Laure, Fletcher Daniel A

机构信息

Department of Bioengineering, University of California, Berkeley, Berkeley, California, United States of America.

Global Health Labs, Inc, Bellevue, Washington, United States of America.

出版信息

PLoS Negl Trop Dis. 2025 Aug 4;19(8):e0012879. doi: 10.1371/journal.pntd.0012879. eCollection 2025 Aug.

Abstract

Schistosomiasis currently affects over 250 million people and remains a public health burden despite ongoing global control efforts. Conventional microscopy is a practical tool for diagnosis and screening of Schistosoma haematobium, but identification of eggs requires a skilled microscopist. Here we present a machine learning (ML)-based strategy for automated detection of S. haematobium that combines two imaging contrasts, brightfield (BF) and darkfield (DF), to improve diagnostic performance. We collected BF and DF images of urine samples, many of them containing S. haematobium eggs, during two different field studies in Côte d'Ivoire using a mobile phone-based microscope, the SchistoScope. We then trained separate egg-detection ML models and compared the patient-level performance of BF and DF models alone to combinations of BF and DF models, using annotations from trained microscopists as the gold standard. We found that models trained on DF images, and almost all BF and DF combinations, performed significantly better than models trained on BF images only. When models were trained on images from the first field study (n = 349 patients, 748 images of each contrast), patient-level classification performance on patient images from the second study (n = 375 patients, 752 images of each contrast) met the WHO Diagnostic Target Product Profile (TPP) sensitivity and specificity for the monitoring and evaluation use case (sensitivity for all models and combinations was >75% when evaluated at a confidence score threshold that resulted in specificity >96.5%). When we used images from both field studies for the training set, performance of the models was improved. Overall, this work shows that the use of DF and BF increases the performance of ML models on images from devices with low-cost optics, while retaining the portability, power, and time-to-results of the WHO's diagnostic TPP. DF requires no additional sample preparation and does not increase the complexity of the imaging system. It thus offers a practical means to improve performance of automated diagnostics for S. haematobium as well as other microscopy-based diagnostics.

摘要

血吸虫病目前影响着超过2.5亿人,尽管全球一直在努力控制,但它仍然是一个公共卫生负担。传统显微镜检查是诊断和筛查埃及血吸虫的实用工具,但识别虫卵需要熟练的显微镜技术人员。在此,我们提出一种基于机器学习(ML)的策略,用于自动检测埃及血吸虫,该策略结合了明场(BF)和暗场(DF)两种成像对比度,以提高诊断性能。在科特迪瓦的两项不同现场研究中,我们使用基于手机的显微镜SchistoScope收集了尿液样本的BF和DF图像,其中许多样本含有埃及血吸虫卵。然后,我们训练了单独的虫卵检测ML模型,并将单独的BF和DF模型与BF和DF模型组合的患者水平性能进行比较,将训练有素的显微镜技术人员的注释作为金标准。我们发现,在DF图像上训练的模型,以及几乎所有的BF和DF组合,其表现都明显优于仅在BF图像上训练的模型。当模型在第一项现场研究的图像上进行训练时(n = 349名患者,每种对比度748张图像),对第二项研究患者图像(n = 375名患者,每种对比度752张图像)的患者水平分类性能达到了世界卫生组织(WHO)诊断目标产品概况(TPP)对监测和评估用例的敏感性和特异性要求(当在置信度得分阈值下进行评估时,所有模型和组合的敏感性均>75%,此时特异性>96.5%)。当我们将两项现场研究的图像都用于训练集时,模型的性能得到了提高。总体而言,这项工作表明,使用DF和BF可以提高ML模型在低成本光学设备图像上的性能,同时保持WHO诊断TPP的便携性、功能和出结果时间。DF不需要额外的样本制备,也不会增加成像系统的复杂性。因此,它为提高埃及血吸虫自动诊断以及其他基于显微镜的诊断性能提供了一种实用方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验