Suppr超能文献

一种使用人工神经网络对非线性不可逆生化反应进行建模的智能框架。

An intelligent framework for modeling nonlinear irreversible biochemical reactions using artificial neural networks.

作者信息

Bilal Hazrat, Shah Rehan Ali, Ahmad Hijaz, Jan Akhter, Radwan Taha

机构信息

Department of Basic Science and Islamiate, University of Engineering and Technology Peshawar, Peshawar, Pakistan.

Near East University, Operational Research Center in Healthcare, Nicosia, PC: 99138, TRNC Mersin 10, Turkey.

出版信息

Sci Rep. 2025 Aug 4;15(1):28458. doi: 10.1038/s41598-025-13146-5.

Abstract

This paper presents an intelligent computational framework for modeling nonlinear irreversible biochemical reactions (NIBR) using artificial neural networks (ANNs). The biochemical reactions are modeled using an extended Michaelis-Menten kinetic scheme involving enzyme-substrate and enzyme-product complexes, expressed through a system of nonlinear ordinary differential equations (ODEs). Datasets were generated using the Runge-Kutta 4th order (RK4) method and used to train a multilayer feedforward ANN employing the Backpropagation Levenberg-Marquardt (BLM) algorithm. The proposed BLM-ANN model is compared with two other training algorithms: Bayesian Regularization (BR) and Scaled Conjugate Gradient (SCG). Six kinetic scenarios, each with four cases of varying reaction rate constants [Formula: see text], were used to validate the models. Performance was evaluated using mean squared error (MSE), absolute error (AE), regression coefficients (R), error histograms, and auto-correlation analysis. Results show that the BLM-ANN model outperforms BR and SCG in terms of accuracy (with MSE as low as [Formula: see text]), convergence speed, and robustness across diverse kinetic profiles. Regression plots confirm high correlation with RK4 solutions, and error distributions validate the model's predictive capability. The comparison between the solution of BLM-ANN and RK4 method of the proposed model. These results demonstrate the high accuracy, reliability, and generalization capability of the proposed framework.

摘要

本文提出了一种智能计算框架,用于使用人工神经网络(ANN)对非线性不可逆生化反应(NIBR)进行建模。生化反应采用扩展的米氏动力学方案进行建模,该方案涉及酶 - 底物和酶 - 产物复合物,通过非线性常微分方程(ODE)系统表示。使用四阶龙格 - 库塔(RK4)方法生成数据集,并用于训练采用反向传播列文伯格 - 马夸特(BLM)算法的多层前馈人工神经网络。将所提出的BLM - ANN模型与其他两种训练算法进行比较:贝叶斯正则化(BR)和缩放共轭梯度(SCG)。使用六种动力学场景,每种场景有四个不同反应速率常数[公式:见原文]的情况,来验证模型。使用均方误差(MSE)、绝对误差(AE)、回归系数(R)、误差直方图和自相关分析来评估性能。结果表明,BLM - ANN模型在准确性(MSE低至[公式:见原文])、收敛速度和跨不同动力学分布的鲁棒性方面优于BR和SCG。回归图证实与RK4解具有高度相关性,误差分布验证了模型的预测能力。所提出模型的BLM - ANN解与RK4方法之间的比较。这些结果证明了所提出框架的高精度、可靠性和泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bffb/12322303/3d404ffc0be1/41598_2025_13146_Fig11_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验