Lu Can, Wan Shenwei, Liu Zhiyong
School of Medicine and Health Management, Huazhong University of Science and Technology, Wuhan, Hubei, China.
School of Agricultural Economics and Rural Development, Renmin University of China, Beijing, China.
NPJ Digit Med. 2025 Aug 4;8(1):501. doi: 10.1038/s41746-025-01905-7.
This study harnesses machine learning to dissect the complex socioeconomic determinants of depression risk among older adults across five international cohorts (HRS, ELSA, SHARE, CHARLS, MHAS). Evaluating six predictive algorithms, XGBoost demonstrated superior performance in four cohorts (AUC 0.7677-0.8771), while LightGBM excelled in ELSA (AUC 0.9011). SHAP analyses identified self-rated health as the predominant predictor, though key factors varied notably-gender was especially influential in MHAS. Stratified analyses by income and sex revealed marked heterogeneity: wealth, employment, digital inclusion, and marital status exerted greater influence in lower-income groups, with distinct gender-specific patterns. These findings highlight machine learning's capacity to reveal nuanced, context-dependent risk profiles beyond traditional models, emphasizing the need for tailored interventions that address the diverse vulnerabilities of aging populations, particularly those socioeconomically disadvantaged.
本研究利用机器学习剖析了五个国际队列(健康与退休研究、英国老年纵向研究、健康、老龄化和退休的社会经济分析、中国健康与养老追踪调查、墨西哥健康与老龄化研究)中老年人抑郁风险的复杂社会经济决定因素。评估六种预测算法后发现,极端梯度提升算法在四个队列中表现卓越(曲线下面积为0.7677 - 0.8771),而轻梯度提升算法在英国老年纵向研究中表现出色(曲线下面积为0.9011)。SHAP分析确定自评健康是主要预测因素,不过关键因素差异显著——性别在墨西哥健康与老龄化研究中影响尤为突出。按收入和性别进行的分层分析显示出明显的异质性:财富、就业、数字融入和婚姻状况在低收入群体中影响更大,且存在明显的性别差异模式。这些发现凸显了机器学习揭示超越传统模型的细微、依赖背景的风险概况的能力,强调了需要采取针对性干预措施来应对老年人群体的各种脆弱性,尤其是那些社会经济处于不利地位的人群。