School of Public Health, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, China, 86 18721538966, 86 021-51322421.
Monash e-Research Centre, Faculty of Engineering, Airdoc Research, Nvidia AI Technology Research Centre, Monash University, Melbourne, Australia.
JMIR Aging. 2024 Oct 9;7:e59810. doi: 10.2196/59810.
Visual impairment (VI) is a prevalent global health issue, affecting over 2.2 billion people worldwide, with nearly half of the Chinese population aged 60 years and older being affected. Early detection of high-risk VI is essential for preventing irreversible vision loss among Chinese middle-aged and older adults. While machine learning (ML) algorithms exhibit significant predictive advantages, their application in predicting VI risk among the general middle-aged and older adult population in China remains limited.
This study aimed to predict VI and identify its determinants using ML algorithms.
We used 19,047 participants from 4 waves of the China Health and Retirement Longitudinal Study (CHARLS) that were conducted between 2011 and 2018. To envisage the prevalence of VI, we generated a geographical distribution map. Additionally, we constructed a model using indicators of a self-reported questionnaire, a physical examination, and blood biomarkers as predictors. Multiple ML algorithms, including gradient boosting machine, distributed random forest, the generalized linear model, deep learning, and stacked ensemble, were used for prediction. We plotted receiver operating characteristic and calibration curves to assess the predictive performance. Variable importance analysis was used to identify key predictors.
Among all participants, 33.9% (6449/19,047) had VI. Qinghai, Chongqing, Anhui, and Sichuan showed the highest VI rates, while Beijing and Xinjiang had the lowest. The generalized linear model, gradient boosting machine, and stacked ensemble achieved acceptable area under curve values of 0.706, 0.710, and 0.715, respectively, with the stacked ensemble performing best. Key predictors included hearing impairment, self-expectation of health status, pain, age, hand grip strength, depression, night sleep duration, high-density lipoprotein cholesterol, and arthritis or rheumatism.
Nearly one-third of middle-aged and older adults in China had VI. The prevalence of VI shows regional variations, but there are no distinct east-west or north-south distribution differences. ML algorithms demonstrate accurate predictive capabilities for VI. The combination of prediction models and variable importance analysis provides valuable insights for the early identification and intervention of VI among Chinese middle-aged and older adults.
视力障碍(VI)是一个普遍存在的全球健康问题,影响着全球超过 22 亿人,近一半的中国 60 岁及以上人口受到影响。早期发现高危 VI 对于预防中国中老年人视力不可逆转的损失至关重要。虽然机器学习(ML)算法具有显著的预测优势,但它们在中国一般中年和老年人群中预测 VI 风险的应用仍然有限。
本研究旨在使用 ML 算法预测 VI 并确定其决定因素。
我们使用了 2011 年至 2018 年期间进行的中国健康与退休纵向研究(CHARLS)的 4 个波次的 19047 名参与者。为了预测 VI 的流行率,我们生成了一张地理分布图。此外,我们使用自我报告问卷、体检和血液生物标志物指标构建了一个模型作为预测指标。使用梯度提升机、分布式随机森林、广义线性模型、深度学习和堆叠集成等多种 ML 算法进行预测。我们绘制了接收者操作特征和校准曲线来评估预测性能。使用变量重要性分析来识别关键预测因素。
在所有参与者中,33.9%(6449/19047)有 VI。青海、重庆、安徽和四川的 VI 发生率最高,而北京和新疆的 VI 发生率最低。广义线性模型、梯度提升机和堆叠集成的曲线下面积分别为 0.706、0.710 和 0.715,其中堆叠集成表现最佳。关键预测因素包括听力障碍、自我预期的健康状况、疼痛、年龄、手握力、抑郁、夜间睡眠时间、高密度脂蛋白胆固醇和关节炎或风湿病。
中国近三分之一的中年和老年人有 VI。VI 的流行率存在地域差异,但没有明显的东西或南北分布差异。ML 算法对 VI 具有准确的预测能力。预测模型和变量重要性分析的结合为中国中年和老年人群中 VI 的早期识别和干预提供了有价值的见解。