基于深度学习的基因扰动效应预测尚未超越简单的线性基线。

Deep-learning-based gene perturbation effect prediction does not yet outperform simple linear baselines.

作者信息

Ahlmann-Eltze Constantin, Huber Wolfgang, Anders Simon

机构信息

BioQuant, University of Heidelberg, Heidelberg, Germany.

Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.

出版信息

Nat Methods. 2025 Aug;22(8):1657-1661. doi: 10.1038/s41592-025-02772-6. Epub 2025 Aug 4.

Abstract

Recent research in deep-learning-based foundation models promises to learn representations of single-cell data that enable prediction of the effects of genetic perturbations. Here we compared five foundation models and two other deep learning models against deliberately simple baselines for predicting transcriptome changes after single or double perturbations. None outperformed the baselines, which highlights the importance of critical benchmarking in directing and evaluating method development.

摘要

基于深度学习的基础模型的最新研究有望学习单细胞数据的表示,从而能够预测基因扰动的影响。在这里,我们将五个基础模型和另外两个深度学习模型与故意设置的简单基线进行比较,以预测单扰动或双扰动后的转录组变化。没有一个模型的表现超过基线,这突出了关键基准测试在指导和评估方法开发中的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索