Suppr超能文献

使用scLAMBDA对单细胞多基因扰动反应进行建模和预测。

Modeling and predicting single-cell multi-gene perturbation responses with scLAMBDA.

作者信息

Wang Gefei, Liu Tianyu, Zhao Jia, Cheng Youshu, Zhao Hongyu

机构信息

Department of Biostatistics, Yale University, CT, USA.

Program of Computational Biology and Bioinformatics, Yale University, CT, USA.

出版信息

bioRxiv. 2024 Dec 8:2024.12.04.626878. doi: 10.1101/2024.12.04.626878.

Abstract

Understanding cellular responses to genetic perturbations is essential for understanding gene regulation and phenotype formation. While high-throughput single-cell RNA-sequencing has facilitated detailed profiling of heterogeneous transcriptional responses to perturbations at the single-cell level, there remains a pressing need for computational models that can decode the mechanisms driving these responses and accurately predict outcomes to prioritize target genes for experimental design. Here, we present scLAMBDA, a deep generative learning framework designed to model and predict single-cell transcriptional responses to genetic perturbations, including single-gene and combinatorial multi-gene perturbations. By leveraging gene embeddings derived from large language models, scLAMBDA effectively integrates prior biological knowledge and disentangles basal cell states from perturbation-specific salient representations. Through comprehensive evaluations on multiple single-cell CRISPR Perturb-seq datasets, scLAMBDA consistently outperformed state-of-the-art methods in predicting perturbation outcomes, achieving higher prediction accuracy. Notably, scLAMBDA demonstrated robust generalization to unseen target genes and perturbations, and its predictions captured both average expression changes and the heterogeneity of single-cell responses. Furthermore, its predictions enable diverse downstream analyses, including the identification of differentially expressed genes and the exploration of genetic interactions, demonstrating its utility and versatility.

摘要

理解细胞对基因扰动的反应对于理解基因调控和表型形成至关重要。虽然高通量单细胞RNA测序有助于在单细胞水平上详细分析对扰动的异质转录反应,但仍迫切需要能够解码驱动这些反应的机制并准确预测结果以确定实验设计目标基因优先级的计算模型。在此,我们展示了scLAMBDA,这是一个深度生成学习框架,旨在对细胞对基因扰动(包括单基因和组合多基因扰动)的转录反应进行建模和预测。通过利用从大语言模型衍生的基因嵌入,scLAMBDA有效地整合了先前的生物学知识,并将基础细胞状态与扰动特异性显著表征区分开来。通过对多个单细胞CRISPR Perturb-seq数据集的全面评估,scLAMBDA在预测扰动结果方面始终优于现有方法,实现了更高的预测准确性。值得注意的是,scLAMBDA对未见过的目标基因和扰动表现出强大的泛化能力,其预测捕获了平均表达变化和单细胞反应的异质性。此外,其预测支持多种下游分析,包括差异表达基因的鉴定和遗传相互作用的探索,证明了其效用和通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b56/11643044/6572d026b40f/nihpp-2024.12.04.626878v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验