Suppr超能文献

AUC-PR是一种用于评估计算机细胞扰动预测模型生物学相关性的更具信息量的指标。

AUC-PR is a More Informative Metric for Assessing the Biological Relevance of In Silico Cellular Perturbation Prediction Models.

作者信息

Zhu Hongxu, Asiaee Amir, Azinfar Leila, Li Jun, Liang Han, Irajizad Ehsan, Do Kim-Anh, Long James P

机构信息

Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston School of Public Health, 1200 Pressler St., 77030, Texas, USA.

Department of Biostatistics, Vanderbilt University Medical Center, 2525 West End Avenue, 37203, Tennessee, USA.

出版信息

bioRxiv. 2025 Mar 11:2025.03.06.641935. doi: 10.1101/2025.03.06.641935.

Abstract

In silico perturbation models, computational methods which can predict cellular responses to perturbations, present an opportunity to reduce the need for costly and time-intensive in vitro experiments. Many recently proposed models predict high-dimensional cellular responses, such as gene or protein expression to perturbations such as gene knockout or drugs. However, evaluating in silico performance has largely relied on metrics such as , which assess overall prediction accuracy but fail to capture biologically significant outcomes like the identification of differentially expressed genes. In this study, we present a novel evaluation framework that introduces the AUC-PR metric to assess the precision and recall of DE gene predictions. By applying this framework to both single-cell and pseudo-bulked datasets, we systematically benchmark simple and advanced computational models. Our results highlight a significant discrepancy between and AUC-PR, with models achieving high values but struggling to identify Differentially expressed genes accurately, as reflected in their low AUC-PR values. This finding underscores the limitations of traditional evaluation metrics and the importance of biologically relevant assessments. Our framework provides a more comprehensive understanding of model capabilities, advancing the application of computational approaches in cellular perturbation research.

摘要

在计算机扰动模型中,即能够预测细胞对扰动反应的计算方法,为减少对昂贵且耗时的体外实验的需求提供了契机。许多最近提出的模型预测高维细胞反应,例如基因或蛋白质表达对诸如基因敲除或药物等扰动的反应。然而,评估计算机模型的性能在很大程度上依赖于诸如之类的指标,这些指标评估整体预测准确性,但无法捕捉到诸如鉴定差异表达基因等具有生物学意义的结果。在本研究中,我们提出了一种新颖的评估框架,引入了AUC-PR指标来评估差异表达基因预测的精度和召回率。通过将此框架应用于单细胞和伪批量数据集,我们系统地对简单和先进的计算模型进行了基准测试。我们的结果突出了和AUC-PR之间的显著差异,模型获得了高值,但难以准确识别差异表达基因,这在其低AUC-PR值中得到体现。这一发现强调了传统评估指标的局限性以及生物学相关评估的重要性。我们的框架提供了对模型能力更全面的理解,推动了计算方法在细胞扰动研究中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e392/11952326/e16bd26b89c7/nihpp-2025.03.06.641935v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验