Suppr超能文献

经典激活的巨噬细胞经历由一氧化氮驱动的具有功能意义的核苷酸代谢重塑。

Classically activated macrophages undergo functionally significant nucleotide metabolism remodelling driven by nitric oxide.

作者信息

John Steven V, Seim Gretchen L, Erazo-Flores Billy J, Votava James A, Urquiza Uzziah S, Arp Nicholas L, Steill John, Freeman Jack, Carnevale Lauren N, Roberts Isaiah, Qing Xin, Lipton Stuart A, Stewart Ron, Knoll Laura J, Fan Jing

机构信息

Morgridge Institute for Research, Madison, WI, USA.

Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Nat Metab. 2025 Aug 4. doi: 10.1038/s42255-025-01337-3.

Abstract

During an immune response, macrophages specifically reprogramme their metabolism to support functional changes. Here, we revealed that nucleotide metabolism is one of the most significantly reprogrammed pathways upon classical activation. Specifically, de novo synthesis of pyrimidines is maintained up to uridine monophosphate, but blocked at cytidine triphosphate and deoxythymidine monophosphate synthesis; de novo synthesis of purines is shut off at the last step (catalysed by AICAR transformylase/IMP cyclohydrolase, ATIC), and cells switch to increased purine salvage. Nucleotide degradation to nitrogenous bases is upregulated but complete oxidation of purine bases (catalysed by xanthine oxidoreductase, XOR) is inhibited, diverting flux into salvage. Mechanistically, nitric oxide was identified as a major regulator of nucleotide metabolism, simultaneously driving multiple key changes, including the transcriptional downregulation of Tyms and profound inhibition of ATIC and XOR. Inhibiting purine salvage using Hgprt knockout or inhibition alters the expression of many stimulation-induced genes, suppresses macrophage migration and phagocytosis, and increases the proliferation of the intracellular parasite Toxoplasma gondii. Together, these results thoroughly uncover the dynamic reprogramming of macrophage nucleotide metabolism upon classical activation and elucidate the regulatory mechanisms and functional significance of such reprogramming.

摘要

在免疫反应过程中,巨噬细胞会特异性地重新编程其代谢以支持功能变化。在此,我们揭示核苷酸代谢是经典激活后重编程最为显著的途径之一。具体而言,嘧啶的从头合成维持到单磷酸尿苷,但在三磷酸胞苷和单磷酸脱氧胸苷合成处受阻;嘌呤的从头合成在最后一步(由AICAR转甲酰基酶/肌苷酸环水解酶,ATIC催化)被关闭,细胞转而增加嘌呤补救合成。核苷酸降解为含氮碱基的过程上调,但嘌呤碱基的完全氧化(由黄嘌呤氧化还原酶,XOR催化)受到抑制,从而使通量转向补救合成。从机制上讲,一氧化氮被确定为核苷酸代谢的主要调节因子,同时驱动多个关键变化,包括Tyms的转录下调以及ATIC和XOR的深度抑制。使用Hgprt基因敲除或抑制来抑制嘌呤补救合成会改变许多刺激诱导基因的表达,抑制巨噬细胞迁移和吞噬作用,并增加细胞内寄生虫弓形虫的增殖。总之,这些结果全面揭示了经典激活后巨噬细胞核苷酸代谢的动态重编程,并阐明了这种重编程的调控机制和功能意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验