Suppr超能文献

从头合成和补救嘌呤合成途径在组织和肿瘤中的作用。

De novo and salvage purine synthesis pathways across tissues and tumors.

机构信息

Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.

Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, Germany.

出版信息

Cell. 2024 Jul 11;187(14):3602-3618.e20. doi: 10.1016/j.cell.2024.05.011. Epub 2024 May 31.

Abstract

Purine nucleotides are vital for RNA and DNA synthesis, signaling, metabolism, and energy homeostasis. To synthesize purines, cells use two principal routes: the de novo and salvage pathways. Traditionally, it is believed that proliferating cells predominantly rely on de novo synthesis, whereas differentiated tissues favor the salvage pathway. Unexpectedly, we find that adenine and inosine are the most effective circulating precursors for supplying purine nucleotides to tissues and tumors, while hypoxanthine is rapidly catabolized and poorly salvaged in vivo. Quantitative metabolic analysis demonstrates comparative contribution from de novo synthesis and salvage pathways in maintaining purine nucleotide pools in tumors. Notably, feeding mice nucleotides accelerates tumor growth, while inhibiting purine salvage slows down tumor progression, revealing a crucial role of the salvage pathway in tumor metabolism. These findings provide fundamental insights into how normal tissues and tumors maintain purine nucleotides and highlight the significance of purine salvage in cancer.

摘要

嘌呤核苷酸对于 RNA 和 DNA 的合成、信号转导、代谢和能量稳态至关重要。细胞利用两种主要途径来合成嘌呤:从头合成途径和补救途径。传统上认为,增殖细胞主要依赖于从头合成,而分化组织则偏向于补救途径。出乎意料的是,我们发现腺嘌呤和肌苷是向组织和肿瘤提供嘌呤核苷酸的最有效循环前体,而次黄嘌呤在体内迅速代谢且回收不良。定量代谢分析表明,从头合成和补救途径在维持肿瘤中嘌呤核苷酸池方面具有相当的贡献。值得注意的是,给小鼠喂食核苷酸会加速肿瘤生长,而抑制嘌呤补救则会减缓肿瘤进展,这揭示了补救途径在肿瘤代谢中的关键作用。这些发现为我们深入了解正常组织和肿瘤如何维持嘌呤核苷酸提供了基本认识,并强调了嘌呤补救在癌症中的重要性。

相似文献

1
De novo and salvage purine synthesis pathways across tissues and tumors.
Cell. 2024 Jul 11;187(14):3602-3618.e20. doi: 10.1016/j.cell.2024.05.011. Epub 2024 May 31.
2
Profiles of purine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers.
Planta. 2006 Dec;225(1):115-26. doi: 10.1007/s00425-006-0334-9. Epub 2006 Jul 15.
4
Characterization of purine nucleotide metabolism in primary rat cardiomyocyte cultures.
Biochim Biophys Acta. 1984 Jun 19;804(2):161-8. doi: 10.1016/0167-4889(84)90145-9.
5
The nucleobase analog 4-thiouracil hijacks the pyrimidine salvage pathway to inhibit growth.
Microbiol Spectr. 2025 Jul;13(7):e0064025. doi: 10.1128/spectrum.00640-25. Epub 2025 May 27.
6
The de novo purine synthesis enzyme Adssl1 promotes cardiomyocyte proliferation and cardiac regeneration.
Sci Signal. 2024 Oct 29;17(860):eadn3285. doi: 10.1126/scisignal.adn3285.
7
Purine nucleotide metabolism in resident and activated rat macrophages in vitro.
Eur J Immunol. 1985 Jun;15(6):627-31. doi: 10.1002/eji.1830150618.
8
Metabolic Hallmarks for Purine Nucleotide Biosynthesis in Small Cell Lung Carcinoma.
Mol Cancer Res. 2024 Jan 2;22(1):82-93. doi: 10.1158/1541-7786.MCR-23-0386.
9
Salvage capacity of hepatoma 3924A and action of dipyridamole.
Adv Enzyme Regul. 1983;21:53-69. doi: 10.1016/0065-2571(83)90008-0.
10
Pentatrichomonas hominis: purine salvage pathway.
Comp Biochem Physiol B. 1988;90(2):419-25. doi: 10.1016/0305-0491(88)90098-3.

引用本文的文献

2
Rewiring of cortical glucose metabolism fuels human brain cancer growth.
Nature. 2025 Sep 3. doi: 10.1038/s41586-025-09460-7.
5
Allopurinol treatment changes microglial characteristics in neonatal mice.
MicroPubl Biol. 2025 Jul 30;2025. doi: 10.17912/micropub.biology.001739. eCollection 2025.
6
Viral Reprogramming of Nucleotide Synthesis and Its Impact on Viral Infection.
J Med Virol. 2025 Aug;97(8):e70563. doi: 10.1002/jmv.70563.
9
Resilience and vulnerabilities of tumor cells under purine shortage stress.
Clin Cancer Res. 2025 Aug 11. doi: 10.1158/1078-0432.CCR-25-1667.

本文引用的文献

1
One-carbon unit supplementation fuels purine synthesis in tumor-infiltrating T cells and augments checkpoint blockade.
Cell Chem Biol. 2024 May 16;31(5):932-943.e8. doi: 10.1016/j.chembiol.2024.04.007.
2
Nucleosides are overlooked fuels in central carbon metabolism.
Trends Endocrinol Metab. 2024 Apr;35(4):290-299. doi: 10.1016/j.tem.2024.01.013. Epub 2024 Feb 29.
3
Metabolic pathway analysis using stable isotopes in patients with cancer.
Nat Rev Cancer. 2023 Dec;23(12):863-878. doi: 10.1038/s41568-023-00632-z. Epub 2023 Oct 31.
4
FH Variant Pathogenicity Promotes Purine Salvage Pathway Dependence in Kidney Cancer.
Cancer Discov. 2023 Sep 6;13(9):2072-2089. doi: 10.1158/2159-8290.CD-22-0874.
5
Emerging roles of nucleotide metabolism in cancer.
Trends Cancer. 2023 Aug;9(8):624-635. doi: 10.1016/j.trecan.2023.04.008. Epub 2023 May 10.
6
Regulation of nucleotide metabolism in cancers and immune disorders.
Trends Cell Biol. 2023 Nov;33(11):950-966. doi: 10.1016/j.tcb.2023.03.003. Epub 2023 Mar 24.
7
Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer.
Geroscience. 2023 Jun;45(3):1889-1898. doi: 10.1007/s11357-023-00742-4. Epub 2023 Mar 1.
8
Gut microbiota-mediated nucleotide synthesis attenuates the response to neoadjuvant chemoradiotherapy in rectal cancer.
Cancer Cell. 2023 Jan 9;41(1):124-138.e6. doi: 10.1016/j.ccell.2022.11.013. Epub 2022 Dec 22.
9
Metabolic flux between organs measured by arteriovenous metabolite gradients.
Exp Mol Med. 2022 Sep;54(9):1354-1366. doi: 10.1038/s12276-022-00803-2. Epub 2022 Sep 8.
10
Nucleotide imbalance decouples cell growth from cell proliferation.
Nat Cell Biol. 2022 Aug;24(8):1252-1264. doi: 10.1038/s41556-022-00965-1. Epub 2022 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验