Ji Ruiya, Lu Chengjie, Huang Zhao, Zhong Jianqi
School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK.
College of Electronics and Information Engineering, Shenzhen University, 518060, Shenzhen, China.
Sci Rep. 2025 Aug 4;15(1):28355. doi: 10.1038/s41598-025-11073-z.
3D skeleton-based human motion prediction is an essential and challenging task for human-machine interactions, aiming to forecast future poses given a history of previous motions. However, most existing works model human motion dependencies exclusively in Euclidean space, neglecting the human motion representation in Euclidean space leads to distortions and loss of information when representation dimensions increase. In this paper, we propose Cross-space Behavior-aware Feature Learning Networks that can not only exploit the spatial-temporal kinematic correlations in Euclidean space, but also capture effective and compact dependencies and motion dynamics in Geometric algebra space. Specifically, we develop a Geometric Algebra Dependency-Aware Extractor, incorporating Geometric Algebra-based Fully Connected layers to adapt to geometric algebraic space, thus enabling the extraction of human action dependency representations. Additionally, we design an Euclidean Kinematic-Aware Extractor utilizing temporal-wise Kinematic-Aware Attention and spatial-wise Kinematic-Aware Feature Extraction. These two modules enhance and complement each other, leading to effective human motion prediction. Extensive experiments demonstrate that our proposed CBFL consistently improves performance, reducing MPJPE by an average of 4.3% on the Human3.6M dataset.
基于3D骨骼的人体运动预测是人机交互中一项重要且具有挑战性的任务,旨在根据先前运动的历史记录预测未来的姿势。然而,大多数现有工作仅在欧几里得空间中对人体运动依赖性进行建模,忽略欧几里得空间中的人体运动表示会导致表示维度增加时出现失真和信息丢失。在本文中,我们提出了跨空间行为感知特征学习网络,该网络不仅可以利用欧几里得空间中的时空运动学相关性,还可以在几何代数空间中捕获有效且紧凑的依赖性和运动动力学。具体而言,我们开发了一种几何代数依赖性感知提取器,结合基于几何代数的全连接层以适应几何代数空间,从而能够提取人体动作依赖性表示。此外,我们设计了一种欧几里得运动学感知提取器,利用时间维度上的运动学感知注意力和空间维度上的运动学感知特征提取。这两个模块相互增强和补充,从而实现有效的人体运动预测。大量实验表明,我们提出的CBFL持续提高了性能,在Human3.6M数据集上平均将MPJPE降低了4.3%。