Wang Weiping, Yang Guang, Liu Yulin, Wei Lichun, Xu Xiaoying, Zhang Chulong, Pan Zhaohong, Liang Yongguang, Yang Bo, Qiu Jie, Zhang Fuquan, Hou Xiaorong, Hu Ke, Liang Xiaokun
Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
NPJ Digit Med. 2025 Aug 4;8(1):503. doi: 10.1038/s41746-025-01903-9.
For patients with locally advanced cervical cancer (LACC), precise survival prediction models could guide personalized treatment. We developed and validated CerviPro, a deep learning-based multimodal prognostic model, to predict disease-free survival (DFS) in 1018 patients with LACC receiving definitive radiotherapy. The model integrates pre- and post-treatment CT imaging, handcrafted radiomic features, and clinical variables. CerviPro demonstrated robust predictive performance in the internal validation cohort (C-index 0.81), and external validation cohorts (C-index 0.70&0.66), significantly stratifying patients into distinct high- and low-risk DFS groups. Multimodal feature fusion consistently outperformed models based on single feature categories (clinical data, imaging, or radiomics alone), highlighting the synergistic value of integrating diverse data sources. By integrating multimodal data to predict DFS and recurrence risk, CerviPro provides a clinically valuable prognostic tool for LACC, offering the potential to guide personalized treatment strategies.
对于局部晚期宫颈癌(LACC)患者,精确的生存预测模型可指导个性化治疗。我们开发并验证了CerviPro,这是一种基于深度学习的多模态预后模型,用于预测1018例接受根治性放疗的LACC患者的无病生存期(DFS)。该模型整合了治疗前和治疗后的CT成像、手工提取的放射组学特征以及临床变量。CerviPro在内部验证队列(C指数0.81)和外部验证队列(C指数0.70和0.66)中表现出强大的预测性能,显著地将患者分为不同的高风险和低风险DFS组。多模态特征融合始终优于基于单一特征类别(仅临床数据、成像或放射组学)的模型,突出了整合不同数据源的协同价值。通过整合多模态数据来预测DFS和复发风险,CerviPro为LACC提供了一种具有临床价值的预后工具,具有指导个性化治疗策略的潜力。
Eur J Nucl Med Mol Imaging. 2025-6-18
Eur Urol Open Sci. 2025-7-25
J Natl Cancer Cent. 2024-2-2
Nat Cancer. 2023-9