文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于接受根治性放疗的宫颈癌预后预测的多模态深度学习模型:一项多中心研究。

Multimodal deep learning model for prognostic prediction in cervical cancer receiving definitive radiotherapy: a multi-center study.

作者信息

Wang Weiping, Yang Guang, Liu Yulin, Wei Lichun, Xu Xiaoying, Zhang Chulong, Pan Zhaohong, Liang Yongguang, Yang Bo, Qiu Jie, Zhang Fuquan, Hou Xiaorong, Hu Ke, Liang Xiaokun

机构信息

Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.

出版信息

NPJ Digit Med. 2025 Aug 4;8(1):503. doi: 10.1038/s41746-025-01903-9.


DOI:10.1038/s41746-025-01903-9
PMID:40760164
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12322216/
Abstract

For patients with locally advanced cervical cancer (LACC), precise survival prediction models could guide personalized treatment. We developed and validated CerviPro, a deep learning-based multimodal prognostic model, to predict disease-free survival (DFS) in 1018 patients with LACC receiving definitive radiotherapy. The model integrates pre- and post-treatment CT imaging, handcrafted radiomic features, and clinical variables. CerviPro demonstrated robust predictive performance in the internal validation cohort (C-index 0.81), and external validation cohorts (C-index 0.70&0.66), significantly stratifying patients into distinct high- and low-risk DFS groups. Multimodal feature fusion consistently outperformed models based on single feature categories (clinical data, imaging, or radiomics alone), highlighting the synergistic value of integrating diverse data sources. By integrating multimodal data to predict DFS and recurrence risk, CerviPro provides a clinically valuable prognostic tool for LACC, offering the potential to guide personalized treatment strategies.

摘要

对于局部晚期宫颈癌(LACC)患者,精确的生存预测模型可指导个性化治疗。我们开发并验证了CerviPro,这是一种基于深度学习的多模态预后模型,用于预测1018例接受根治性放疗的LACC患者的无病生存期(DFS)。该模型整合了治疗前和治疗后的CT成像、手工提取的放射组学特征以及临床变量。CerviPro在内部验证队列(C指数0.81)和外部验证队列(C指数0.70和0.66)中表现出强大的预测性能,显著地将患者分为不同的高风险和低风险DFS组。多模态特征融合始终优于基于单一特征类别(仅临床数据、成像或放射组学)的模型,突出了整合不同数据源的协同价值。通过整合多模态数据来预测DFS和复发风险,CerviPro为LACC提供了一种具有临床价值的预后工具,具有指导个性化治疗策略的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7b8/12322216/fc1ea148898e/41746_2025_1903_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7b8/12322216/18e90a2df707/41746_2025_1903_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7b8/12322216/abe96db453a6/41746_2025_1903_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7b8/12322216/5ac9cfae9bb2/41746_2025_1903_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7b8/12322216/2eb7f36d7075/41746_2025_1903_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7b8/12322216/fc1ea148898e/41746_2025_1903_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7b8/12322216/18e90a2df707/41746_2025_1903_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7b8/12322216/abe96db453a6/41746_2025_1903_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7b8/12322216/5ac9cfae9bb2/41746_2025_1903_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7b8/12322216/2eb7f36d7075/41746_2025_1903_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7b8/12322216/fc1ea148898e/41746_2025_1903_Fig5_HTML.jpg

相似文献

[1]
Multimodal deep learning model for prognostic prediction in cervical cancer receiving definitive radiotherapy: a multi-center study.

NPJ Digit Med. 2025-8-4

[2]
An exploratory assessment of early and delta PET radiomic features for outcome prediction in locally advanced cervical cancer.

Eur J Nucl Med Mol Imaging. 2025-6-18

[3]
Development and validation of a prediction model for lymph node metastasis in thyroid cancer: integrating deep learning and radiomics features from intra- and peri-tumoral regions.

Gland Surg. 2025-7-31

[4]
Radiomic Profiling of Tumor Thrombus for Predicting Recurrence in Renal Cell Carcinoma.

Eur Urol Open Sci. 2025-7-25

[5]
Prediction of EGFR Mutations in Lung Adenocarcinoma via CT Images: A Comparative Study of Intratumoral and Peritumoral Radiomics, Deep Learning, and Fusion Models.

Acad Radiol. 2025-5-5

[6]
Survival Prediction of Esophageal Cancer Using 3D CT Imaging: A Context-Aware Approach With Non-Local Feature Aggregation and Graph-Based Spatial Interaction.

IEEE J Transl Eng Health Med. 2025-4-21

[7]
Integrative multimodal ultrasound and radiomics for early prediction of neoadjuvant therapy response in breast cancer: a clinical study.

BMC Cancer. 2025-7-9

[8]
Development and validation of a prognostic prediction model for lumbar-disc herniation based on machine learning and fusion of clinical text data and radiomic features.

Eur Spine J. 2025-6-30

[9]
Explainable multi-modal radiomics for early prediction of liver metastasis in rectal cancer: a multicentric study.

Insights Imaging. 2025-6-27

[10]
Early prediction of progression-free survival of patients with locally advanced nasopharyngeal carcinoma using multi-parametric MRI radiomics.

BMC Cancer. 2025-3-21

本文引用的文献

[1]
Induction chemotherapy followed by standard chemoradiotherapy versus standard chemoradiotherapy alone in patients with locally advanced cervical cancer (GCIG INTERLACE): an international, multicentre, randomised phase 3 trial.

Lancet. 2024-10-19

[2]
Weekly Image Guidance in Patients With Cervical Cancer Treated With Intensity-Modulated Radiation Therapy: Results of a Large Cohort Study.

Cancer Med. 2024-9

[3]
Pembrolizumab or placebo with chemoradiotherapy followed by pembrolizumab or placebo for newly diagnosed, high-risk, locally advanced cervical cancer (ENGOT-cx11/GOG-3047/KEYNOTE-A18): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 trial.

Lancet. 2024-10-5

[4]
A T2-weighted MRI-based radiomic signature for disease-free survival in locally advanced cervical cancer following chemoradiation: An international, multicentre study.

Radiother Oncol. 2024-10

[5]
Cancer incidence and mortality in China, 2022.

J Natl Cancer Cent. 2024-2-2

[6]
Machine learning-based radiomics for predicting outcomes in cervical cancer patients undergoing concurrent chemoradiotherapy.

Comput Biol Med. 2024-7

[7]
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2024

[8]
Pembrolizumab or placebo with chemoradiotherapy followed by pembrolizumab or placebo for newly diagnosed, high-risk, locally advanced cervical cancer (ENGOT-cx11/GOG-3047/KEYNOTE-A18): a randomised, double-blind, phase 3 clinical trial.

Lancet. 2024-4-6

[9]
Development and validation of a F-FDG PET/CT radiomics nomogram for predicting progression free survival in locally advanced cervical cancer: a retrospective multicenter study.

BMC Cancer. 2024-1-30

[10]
Harnessing progress in radiotherapy for global cancer control.

Nat Cancer. 2023-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索