文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

甲状腺癌淋巴结转移预测模型的开发与验证:整合来自肿瘤内部和周围区域的深度学习与影像组学特征

Development and validation of a prediction model for lymph node metastasis in thyroid cancer: integrating deep learning and radiomics features from intra- and peri-tumoral regions.

作者信息

Zhong Lichang, Shi Lin, Liu Xinpeng, Zhao Yanna, Gu Liping, Bai Wenkun, Zheng Yuanyi

机构信息

Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai, China.

Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.

出版信息

Gland Surg. 2025 Jul 31;14(7):1272-1282. doi: 10.21037/gs-2025-50. Epub 2025 Jul 28.


DOI:10.21037/gs-2025-50
PMID:40771372
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12322773/
Abstract

BACKGROUND: Current preoperative imaging methods, such as ultrasound, are limited by operator dependency and suboptimal sensitivity for detecting central lymph node metastasis (CLNM). This study aimed to propose a method that integrates deep learning and radiomics to accurately predict lymph node metastasis in thyroid cancer by analyzing intra- and peri-tumoral imaging features, thereby improving the preoperative prediction accuracy. METHODS: From July 2020 to June 2022, 405 patients diagnosed with PTC were enrolled from two centers: Center 1 (Shanghai Sixth People's Hospital) with 294 patients divided into a training set (n=294) and an internal validation set, and Center 2 (Tongji Hospital Affiliated to Tongji University) with 111 patients as the external test set. Postoperative pathological confirmation served as the reference standard for CLNM diagnosis. A total of 1,561 radiomics features and 2,048 deep learning features were extracted from intra- and peri-tumoral regions of each ultrasound image. Feature selection was performed using analysis of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO), resulting in the selection of relevant features for constructing support vector machine (SVM) models. Additionally, radiomics-deep learning fusion models were developed by combining selected radiomics and deep learning features. RESULTS: Among 405 patients (mean age: 46.59±12.74 years; 68.6% female), 171 exhibited CLNM, highlighting the clinical urgency for accurate prediction. Among the 405 patients, 171 exhibited CLNM. The radiomics models demonstrated area under the curve (AUC) values of 0.760 in internal validation and 0.748 in the external test cohort. The deep learning models demonstrated improved performance with AUCs of 0.794 and 0.756 in the internal and external test sets. Notably, the highest AUC values of 0.897 (internal validation) and 0.881 (external test set) were obtained by the radiomics-deep learning fusion SVM model incorporating both intra- and peri-tumoral regions. DeLong's test confirmed statistically significant improvements (P<0.05) of the fusion model over the intra-tumoral radiomics model (P=0.008), intra-tumoral deep learning model (P=0.005), and combined intra-tumoral radiomics-deep learning model (P=0.01). However, no significant differences were observed compared to the combined intra- and peri-tumoral deep learning model (P=0.17). Decision curve analysis indicated that the fusion model offers greater clinical utility in predicting CLNM. CONCLUSIONS: The integration of radiomics and deep learning features significantly enhances the diagnostic performance for predicting CLNM in papillary thyroid carcinoma (PTC). The radiomics-deep learning fusion SVM model outperforms individual radiomics and deep learning models, demonstrating substantial potential for clinical application in improving surgical decision-making and patient management. The fusion model could reduce unnecessary central lymph node dissections (CLNDs) and improve surgical planning by providing personalized risk stratification.

摘要

背景:当前的术前成像方法,如超声,受操作者依赖性限制,且在检测中央淋巴结转移(CLNM)方面敏感性欠佳。本研究旨在提出一种整合深度学习和放射组学的方法,通过分析肿瘤内及肿瘤周围的成像特征来准确预测甲状腺癌的淋巴结转移,从而提高术前预测准确性。 方法:2020年7月至2022年6月,从两个中心纳入405例诊断为PTC的患者:中心1(上海交通大学附属第六人民医院)有294例患者,分为训练集(n = 294)和内部验证集;中心2(同济大学附属同济医院)有111例患者作为外部测试集。术后病理确诊作为CLNM诊断的参考标准。从每个超声图像的肿瘤内及肿瘤周围区域提取了总共1561个放射组学特征和2048个深度学习特征。使用方差分析(ANOVA)和最小绝对收缩和选择算子(LASSO)进行特征选择,从而选择用于构建支持向量机(SVM)模型的相关特征。此外,通过结合选定的放射组学和深度学习特征开发了放射组学 - 深度学习融合模型。 结果:在405例患者(平均年龄:46.59±12.74岁;68.6%为女性)中,171例出现CLNM,凸显了准确预测的临床紧迫性。在405例患者中,171例出现CLNM。放射组学模型在内部验证中的曲线下面积(AUC)值为0.760,在外部测试队列中为0.748。深度学习模型在内部和外部测试集中的AUC分别为0.794和0.756,表现有所改善。值得注意的是,纳入肿瘤内及肿瘤周围区域的放射组学 - 深度学习融合SVM模型在内部验证中获得了最高的AUC值0.897,在外部测试集中为0.881。德龙检验证实融合模型相对于肿瘤内放射组学模型(P = 0.008)、肿瘤内深度学习模型(P = 0.005)以及肿瘤内放射组学 - 深度学习联合模型(P = 0.01)有统计学意义的显著改善(P < 0.05)。然而,与肿瘤内及肿瘤周围深度学习联合模型相比,未观察到显著差异(P = 0.17)。决策曲线分析表明融合模型在预测CLNM方面具有更大的临床实用性。 结论:放射组学和深度学习特征的整合显著提高了预测甲状腺乳头状癌(PTC)中CLNM的诊断性能。放射组学 - 深度学习融合SVM模型优于单独的放射组学和深度学习模型,在改善手术决策和患者管理的临床应用中显示出巨大潜力。融合模型可通过提供个性化风险分层减少不必要的中央淋巴结清扫(CLND)并改善手术规划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/836f/12322773/d0d517feb08b/gs-14-07-1272-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/836f/12322773/150fdfa8b3cf/gs-14-07-1272-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/836f/12322773/979644d8d584/gs-14-07-1272-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/836f/12322773/d0d517feb08b/gs-14-07-1272-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/836f/12322773/150fdfa8b3cf/gs-14-07-1272-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/836f/12322773/979644d8d584/gs-14-07-1272-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/836f/12322773/d0d517feb08b/gs-14-07-1272-f3.jpg

相似文献

[1]
Development and validation of a prediction model for lymph node metastasis in thyroid cancer: integrating deep learning and radiomics features from intra- and peri-tumoral regions.

Gland Surg. 2025-7-31

[2]
Integrative radiomics of intra- and peri-tumoral features for enhanced risk prediction in thymic tumors: a multimodal analysis of tumor microenvironment contributions.

BMC Med Imaging. 2025-7-17

[3]
Radiomics features from whole thyroid gland tissue for prediction of cervical lymph node metastasis in the patients with papillary thyroid carcinoma.

J Cancer Res Clin Oncol. 2023-11

[4]
A radiopathomics model for predicting large-number cervical lymph node metastasis in clinical N0 papillary thyroid carcinoma.

Eur Radiol. 2025-1-29

[5]
Multimodal ultrasound radiomics containing microflow images for the prediction of central lymph node metastasis in papillary thyroid carcinoma.

Front Oncol. 2025-7-16

[6]
Radiomics Nomogram Based on Optimal Volume of Interest Derived from High-Resolution CT for Preoperative Prediction of IASLC Grading in Clinical IA Lung Adenocarcinomas: A Multi-Center, Large-Population Study.

Technol Cancer Res Treat. 2024

[7]
Radiomics based on dual-energy CT for noninvasive prediction of cervical lymph node metastases in patients with nasopharyngeal carcinoma.

Radiography (Lond). 2025-7

[8]
Integrating multimodal ultrasound imaging for improved radiomics sentinel lymph node assessment in breast cancer.

Gland Surg. 2025-7-31

[9]
The value of ultrasonographic scoring method and nomogram in assessing cervical lymph node metastasis of papillary thyroid carcinoma.

Thyroid Res. 2025-7-22

[10]
Machine learning-based CT radiomics enhances bladder cancer staging predictions: A comparative study of clinical, radiomics, and combined models.

Med Phys. 2024-9

本文引用的文献

[1]
Machine learning algorithms for predicting malignancy grades of lung adenocarcinoma and guiding treatments: CT radiomics-based comparisons.

J Thorac Dis. 2025-4-30

[2]
Using artificial intelligence based imaging to predict lymph node metastasis in non-small cell lung cancer: a systematic review and meta-analysis.

Quant Imaging Med Surg. 2024-10-1

[3]
Development and Validation of Clinical-Radiomics Nomogram for Preoperative Prediction of Central Lymph Node Metastasis in Papillary Thyroid Carcinoma.

Acad Radiol. 2024-6

[4]
An integrated model incorporating deep learning, hand-crafted radiomics and clinical and US features to diagnose central lymph node metastasis in patients with papillary thyroid cancer.

BMC Cancer. 2024-1-12

[5]
Deep learning predicts cervical lymph node metastasis in clinically node-negative papillary thyroid carcinoma.

Insights Imaging. 2023-12-20

[6]
Peritumoral Radiomics Strategy Based on Ensemble Learning for the Prediction of Gleason Grade Group of Prostate Cancer.

Acad Radiol. 2023-9

[7]
Artificial Intelligence in Thyroidology: A Narrative Review of the Current Applications, Associated Challenges, and Future Directions.

Thyroid. 2023-8

[8]
A different perspective on F-FDG PET radiomics in colorectal cancer patients: The relationship between intra & peritumoral analysis and pathological findings.

Rev Esp Med Nucl Imagen Mol (Engl Ed). 2023

[9]
Intra- and peritumoral radiomics for predicting malignant BiRADS category 4 breast lesions on contrast-enhanced spectral mammography: a multicenter study.

Eur Radiol. 2023-8

[10]
Investigation of the combination of intratumoral and peritumoral radiomic signatures for predicting epidermal growth factor receptor mutation in lung adenocarcinoma.

J Appl Clin Med Phys. 2023-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索