Suppr超能文献

海洋真菌不断扩展的遗传和功能多样性。

Expanded genetic and functional diversity of oceanic fungi.

作者信息

Peng Xuefeng, Valentine David L

机构信息

School of Earth, Ocean and Environment, University of South Carolina, Columbia, SC, USA.

Marine Science Institute, University of California, Santa Barbara, CA, USA.

出版信息

Microbiome. 2025 Aug 4;13(1):179. doi: 10.1186/s40168-025-02162-2.

Abstract

BACKGROUND

Fungi are known members of marine microbiomes that can act as saprotrophs, parasites, and pathogens. Although a few studies utilizing cultivation-based methods and metabarcoding have been conducted, the diversity, ecological roles, and functional activities of fungi in the open ocean remain vastly underexplored. This gap in knowledge is particularly notable in oxygen minimum zones (OMZ) of the ocean, which have expanded over the past 50 years, affecting marine ecosystems and biogeochemical cycles. The eastern tropical North Pacific Ocean (ETNP) is the largest oxygen minimum zone where fungi have been implicated in the production of the potent greenhouse gas nitrous oxide. Nevertheless, anaerobic metabolisms have rarely been investigated for fungi within the oxygen-depleted water columns of the ocean.

RESULTS

We report previously unrecognized diversity and activity of fungi in the ETNP OMZ. Phylogenetic analysis based on ribosomal proteins and carbohydrate-active enzyme (CAZyme) gene families revealed that oceanic fungi form distinct evolutionary clades that diverge from their terrestrial counterparts, challenging earlier models of multiple, intermingled marine-terrestrial transitions. Despite comprising a very low percentage of the total DNA and RNA pool, fungi accounted for a disproportionate share of extracellular CAZyme expression, with glycoside hydrolase family 7 (GH7) emerging as the dominant enzyme. The high expression of fungal GH7 genes suggests a specialized role fungi play in particle degradation, potentially acting on cellulose derived from dinoflagellates and pelagic tunicates, as well as chitosan derived from bacterial deacetylation of chitin. The strong correlation between the gene expression of fungal GH7 and bacterial chitin deacetylase suggests a potential synergy between bacteria and fungi in the degradation of chitin. Moreover, the correlation between dissimilatory nitrogen cycling processes and fungal hydrolytic activities provides new evidence for fungi as key players in linking carbon remineralization and nitrogen cycling in oxygen minimum zones.

CONCLUSIONS

Our results point to fungi as pivotal contributors to particle remineralization in the ocean, potentially modulating the coupled cycles of carbon and nitrogen in OMZs. Integrating these fungal processes into marine ecosystem models may therefore be essential for improving our understanding of global biogeochemical dynamics and predicting responses to ocean deoxygenation. Video Abstract.

摘要

背景

真菌是海洋微生物群落中已知的成员,可作为腐生菌、寄生虫和病原体。尽管已经开展了一些利用基于培养的方法和宏条形码技术的研究,但公海中真菌的多样性、生态作用和功能活动仍未得到充分探索。在过去50年中不断扩大、影响海洋生态系统和生物地球化学循环的海洋低氧区(OMZ),这一知识空白尤为明显。东热带北太平洋(ETNP)是最大的海洋低氧区,真菌与强效温室气体一氧化二氮的产生有关。然而,对于海洋贫氧水柱中的真菌,厌氧代谢很少被研究。

结果

我们报告了ETNP海洋低氧区中真菌此前未被认识到的多样性和活性。基于核糖体蛋白和碳水化合物活性酶(CAZyme)基因家族的系统发育分析表明,海洋真菌形成了与陆地真菌不同的独特进化分支,这对早期关于多次、混合的海陆过渡的模型提出了挑战。尽管真菌在总DNA和RNA库中所占比例极低,但它们在细胞外CAZyme表达中所占份额却不成比例,糖苷水解酶家族7(GH7)成为主要酶类。真菌GH7基因的高表达表明真菌在颗粒降解中发挥着特殊作用,可能作用于源自甲藻和浮游被囊动物的纤维素,以及源自几丁质细菌脱乙酰作用的壳聚糖。真菌GH7基因表达与细菌几丁质脱乙酰酶之间的强相关性表明,细菌和真菌在几丁质降解中可能存在协同作用。此外,异化氮循环过程与真菌水解活性之间的相关性为真菌作为海洋低氧区碳再矿化和氮循环联系中的关键参与者提供了新证据。

结论

我们的结果表明真菌是海洋中颗粒再矿化的关键贡献者,可能调节海洋低氧区碳和氮的耦合循环。因此,将这些真菌过程纳入海洋生态系统模型对于增进我们对全球生物地球化学动态的理解以及预测对海洋脱氧的响应可能至关重要。视频摘要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验