Suppr超能文献

用于肾脏超声分析的自然语言处理:将影像报告与慢性肾脏病诊断相关联

Natural language processing for kidney ultrasound analysis: correlating imaging reports with chronic kidney disease diagnosis.

作者信息

Wang Chenlu, Banerjee Ritwik, Kuperstein Harry, Malick Hamza, Bano Ruqiyya, Cunningham Robin L, Tahir Hira, Sakhuja Priyal, Hajagos Janos, Koraishy Farrukh M

机构信息

Department of Computer Science, Stony Brook University, NY, USA.

Renaissance School of Medicine, Stony Brook University, NY, USA.

出版信息

Ren Fail. 2025 Dec;47(1):2539938. doi: 10.1080/0886022X.2025.2539938. Epub 2025 Aug 4.

Abstract

INTRODUCTION

Natural language processing (NLP) has been used to analyze unstructured imaging report data, yet its application in identifying chronic kidney disease (CKD) features from kidney ultrasound reports remains unexplored.

METHODS

In a single-center pilot study, we analyzed 1,068 kidney ultrasound reports using NLP techniques. To identify kidney echogenicity as either "normal" or "increased," we used two methods: one that looks at individual words and another that analyzes full sentences. Kidney length was identified as "small" if its length was below the 10th percentile. Nephrologists reviewed 100 randomly selected reports to create the reference standard (ground truth) for initial model training followed by model validation on an independent set of 100 reports.

RESULTS

The word-level NLP model outperformed the sentence-level approach in classifying increased echogenicity (accuracy: 0.96 vs. 0.89 for the left kidney; 0.97 vs. 0.92 for the right kidney). This model was then applied to the full dataset to assess associations with CKD. Multivariable logistic regression identified bilaterally increased echogenicity as the strongest predictor of CKD (odds ratio [OR] = 7.642, 95% confidence interval [CI]: 4.887-11.949;  < 0.0001), followed by bilaterally small kidneys (OR = 4.981 [1.522, 16.300];  = 0.008). Among individuals without CKD, those with bilaterally increased echogenicity had significantly lower kidney function than those with normal echogenicity.

CONCLUSIONS

State-of-the-art NLP models can accurately extract CKD-related features from ultrasound reports, with the potential of providing a scalable tool for early detection and risk stratification. Future research should focus on validating these models across different healthcare systems.

摘要

引言

自然语言处理(NLP)已被用于分析非结构化的影像报告数据,但其在从肾脏超声报告中识别慢性肾脏病(CKD)特征方面的应用仍未得到探索。

方法

在一项单中心试点研究中,我们使用NLP技术分析了1068份肾脏超声报告。为了将肾脏回声性识别为“正常”或“增强”,我们使用了两种方法:一种是查看单个单词,另一种是分析完整句子。如果肾脏长度低于第10百分位数,则将其识别为“小”。肾脏科医生审查了100份随机选择的报告,以创建用于初始模型训练的参考标准(真实情况),随后在另一组100份报告上进行模型验证。

结果

在对增强回声性进行分类时,单词级NLP模型的表现优于句子级方法(左肾准确率:0.96对0.89;右肾准确率:0.97对0.92)。然后将该模型应用于完整数据集以评估与CKD的关联。多变量逻辑回归确定双侧回声性增强是CKD的最强预测因素(优势比[OR] = 7.642,95%置信区间[CI]:4.887 - 11.949;P < 0.0001),其次是双侧小肾脏(OR = 4.981 [1.522, 16.300];P = 0.008)。在无CKD的个体中,双侧回声性增强者的肾功能显著低于回声性正常者。

结论

先进的NLP模型可以准确地从超声报告中提取与CKD相关的特征,有可能为早期检测和风险分层提供一种可扩展的工具。未来的研究应侧重于在不同的医疗系统中验证这些模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验