Han Shasha, Chen Wangyue, Shen Muzi, Shao Ruitai, Yang Weizhong, Wang Chen
School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China.
BMJ Public Health. 2025 Aug 3;3(2):e002474. doi: 10.1136/bmjph-2024-002474. eCollection 2025.
We aimed to quantify how diseases accumulate and diminish among ageing populations, and examine how modifiable risk factors influence these progressions.
In this multicohort study with four cohorts, China Health and Retirement Longitudinal Study, the English Longitudinal Study of Ageing (ELSA), the Health and Retirement Study, and the Survey of Health, Ageing and Retirement in Europe (SHARE), and 75 874 participants, we employed a multistage model that accommodated bidirectional transitions between four health stages (0, 1, 2, ≥3 conditions) from baseline to 8 years, and conducted matching analyses to examine the influence of age, sex, socioeconomic status (SES) and lifestyle factors on these transitions.
Disease accumulated faster than diminished (0.08-0.44 vs 0.00-0.06). Transitions accelerated towards severe multimorbidity (0→1: 0.29 (95% CI 0.28 to 0.29), 1→2: 0.27 (95% CI 0.27 to 0.28) and 2→≥3: 0.44 (95% CI 0.43 to 0.45)). Mortality risk escalated with condition count: 0.08 (95% CI 0.08 to 0.09) for 0 conditions, 0.13 (95% CI 0.12 to 0.13) for 1 condition 0.17 (95% CI 0.16 to 0.18) for 2 conditions, and 0.27 (95% CI 0.26 to 0.27) for ≥3 conditions. Cohorts exhibited broadly similar progression patterns, though ELSA demonstrated slower transitions to ≥3 conditions and SHARE showed elevated mortality from 0 and 1 conditions. Key risk factor effects emerged: disease accumulation peaked at 55-65 years; females had higher disease accumulation but lower transitions to death than males; Low-SES populations had higher probabilities of developing ≥3 conditions than the middle-SES group, while middle-SES populations had higher accumulation probabilities for 0→≥2 and 2→≥3. Lifestyle factors exerted differential impacts: smoking increased 1→3 transitions and drinking increased 0→2 transitions, while physician inactivity increased 0→3 transitions. Sensitivity analyses confirmed robustness across 11 condition-specific models.
Multimorbidity progression accelerates nonlinearly, with risk factors exerting varying effects, depending on the magnitude of risk factors and initial health states. Precision interventions should target age, sex, SES and lifestyle-specific strategies.
我们旨在量化疾病在老年人群中的累积和减少情况,并研究可改变的风险因素如何影响这些进展。
在这项包含四个队列的多队列研究中,即中国健康与养老追踪调查(China Health and Retirement Longitudinal Study)、英国老年纵向研究(English Longitudinal Study of Ageing,ELSA)、健康与退休研究(Health and Retirement Study)以及欧洲健康、老龄与退休调查(Survey of Health, Ageing and Retirement in Europe,SHARE),共有75874名参与者。我们采用了一个多阶段模型,该模型考虑了从基线到8年期间四个健康阶段(0、1、2、≥3种疾病状况)之间的双向转变,并进行了匹配分析,以研究年龄、性别、社会经济地位(SES)和生活方式因素对这些转变的影响。
疾病累积速度快于减少速度(0.08 - 0.44对0.00 - 0.06)。向严重多重疾病的转变加速(0→1:0.29(95%置信区间0.28至0.29),1→2:0.27(95%置信区间0.27至0.28),2→≥3:0.44(95%置信区间0.43至0.45))。死亡风险随着疾病数量的增加而升高:0种疾病时为0.08(95%置信区间0.08至0.09),1种疾病时为0.13(95%置信区间0.12至0.13),2种疾病时为0.17(95%置信区间0.16至0.18),≥3种疾病时为0.27(95%置信区间0.26至0.27)。各队列表现出大致相似的进展模式,不过ELSA向≥3种疾病状况的转变较慢,而SHARE在0种和1种疾病状况下的死亡率较高。出现了关键风险因素的影响:疾病累积在55 - 65岁达到峰值;女性的疾病累积较高,但向死亡的转变低于男性;低社会经济地位人群发展为≥3种疾病状况的概率高于中等社会经济地位组,而中等社会经济地位人群在0→≥2和2→≥3的累积概率较高。生活方式因素产生了不同的影响:吸烟增加了1→3的转变,饮酒增加了0→2的转变,而身体不活动增加了0→3的转变。敏感性分析证实了在11种特定疾病模型中的稳健性。
多重疾病进展呈非线性加速,风险因素根据其大小和初始健康状态产生不同影响。精准干预应针对年龄、性别、社会经济地位和特定生活方式的策略。