Wu Zongting, Van Hooser Stephen D
Department of Biochemistry, Brandeis University, Waltham, MA, United States.
Department of Biology, Brandeis University, Waltham, MA, United States.
Front Neural Circuits. 2025 Jul 21;19:1542332. doi: 10.3389/fncir.2025.1542332. eCollection 2025.
This study explores the efficacy of Bayesian estimation in modeling the orientation and direction selectivity of neurons in the primary visual cortex (V1). Unlike traditional methods such as least squares, Bayesian estimation adeptly handles the probabilistic nature of neuronal responses, offering robust analysis even with limited data and weak selectivity. Through the analysis of both simulated and experimental data, we demonstrate that Bayesian estimation not only accurately fits the neuronal tuning curves but also effectively captures parameter certainty or uncertainty of both strongly and weakly selective neurons. Our results affirm the complex interdependencies among response parameters and highlight the variability in neuronal behavior under varied stimulus conditions. Our findings provide guidance as to how many response samples are necessary for Bayesian parameter estimation to achieve reliable fitting, making it particularly suitable for studies with constraints on data availability.
本研究探讨了贝叶斯估计在对初级视觉皮层(V1)神经元的方向和方向选择性进行建模时的功效。与最小二乘法等传统方法不同,贝叶斯估计能够巧妙地处理神经元反应的概率性质,即使在数据有限且选择性较弱的情况下也能提供稳健的分析。通过对模拟数据和实验数据的分析,我们证明贝叶斯估计不仅能准确拟合神经元调谐曲线,还能有效捕捉强选择性和弱选择性神经元的参数确定性或不确定性。我们的结果证实了反应参数之间复杂的相互依赖关系,并突出了在不同刺激条件下神经元行为的变异性。我们的发现为贝叶斯参数估计需要多少反应样本才能实现可靠拟合提供了指导,使其特别适用于数据可用性受限的研究。