Suppr超能文献

群体视觉皮层反应的高维几何结构。

High-dimensional geometry of population responses in visual cortex.

机构信息

HHMI Janelia Research Campus, Ashburn, VA, USA.

UCL Gatsby Computational Neuroscience Unit, University College London, London, UK.

出版信息

Nature. 2019 Jul;571(7765):361-365. doi: 10.1038/s41586-019-1346-5. Epub 2019 Jun 26.

Abstract

A neuronal population encodes information most efficiently when its stimulus responses are high-dimensional and uncorrelated, and most robustly when they are lower-dimensional and correlated. Here we analysed the dimensionality of the encoding of natural images by large populations of neurons in the visual cortex of awake mice. The evoked population activity was high-dimensional, and correlations obeyed an unexpected power law: the nth principal component variance scaled as 1/n. This scaling was not inherited from the power law spectrum of natural images, because it persisted after stimulus whitening. We proved mathematically that if the variance spectrum was to decay more slowly then the population code could not be smooth, allowing small changes in input to dominate population activity. The theory also predicts larger power-law exponents for lower-dimensional stimulus ensembles, which we validated experimentally. These results suggest that coding smoothness may represent a fundamental constraint that determines correlations in neural population codes.

摘要

当神经元群体的刺激反应具有高维度且不相关时,其信息编码效率最高;而当刺激反应具有低维度且相关时,其信息编码稳健性最强。在此,我们分析了在清醒小鼠的视觉皮层中,大量神经元对自然图像的编码的维度。诱发的群体活动具有高维度,且相关性符合一种出人意料的幂律关系:第 n 个主成分方差与 1/n 成比例。这种标度关系并非源自自然图像的幂律谱,因为在刺激白化后它仍然存在。我们从数学上证明,如果方差谱衰减得更慢,那么群体代码就不可能是平滑的,这使得输入中的微小变化能够主导群体活动。该理论还预测,对于低维度的刺激集合,幂律指数会更大,我们通过实验验证了这一点。这些结果表明,编码平滑性可能代表了一种基本约束,它决定了神经群体编码中的相关性。

相似文献

1
High-dimensional geometry of population responses in visual cortex.群体视觉皮层反应的高维几何结构。
Nature. 2019 Jul;571(7765):361-365. doi: 10.1038/s41586-019-1346-5. Epub 2019 Jun 26.
6
Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex.猕猴初级视觉皮层中受刺激驱动的群体活动模式
PLoS Comput Biol. 2016 Dec 9;12(12):e1005185. doi: 10.1371/journal.pcbi.1005185. eCollection 2016 Dec.
10
The Nature of Shared Cortical Variability.共享皮质变异性的本质。
Neuron. 2015 Aug 5;87(3):644-56. doi: 10.1016/j.neuron.2015.06.035. Epub 2015 Jul 23.

引用本文的文献

5
Stochastic activity in low-rank recurrent neural networks.低秩递归神经网络中的随机活动。
PLoS Comput Biol. 2025 Aug 18;21(8):e1013371. doi: 10.1371/journal.pcbi.1013371.
10
A neural manifold view of the brain.大脑的神经流形视角。
Nat Neurosci. 2025 Jul 28. doi: 10.1038/s41593-025-02031-z.

本文引用的文献

1
Spontaneous behaviors drive multidimensional, brainwide activity.自发性行为驱动多维全脑活动。
Science. 2019 Apr 19;364(6437):255. doi: 10.1126/science.aav7893. Epub 2019 Apr 18.
4
Robustness of Spike Deconvolution for Neuronal Calcium Imaging. Spike 去卷积在神经元钙成像中的稳健性。
J Neurosci. 2018 Sep 12;38(37):7976-7985. doi: 10.1523/JNEUROSCI.3339-17.2018. Epub 2018 Aug 6.
6
Fast online deconvolution of calcium imaging data.钙成像数据的快速在线反卷积
PLoS Comput Biol. 2017 Mar 14;13(3):e1005423. doi: 10.1371/journal.pcbi.1005423. eCollection 2017 Mar.
7
Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex.猕猴初级视觉皮层中受刺激驱动的群体活动模式
PLoS Comput Biol. 2016 Dec 9;12(12):e1005185. doi: 10.1371/journal.pcbi.1005185. eCollection 2016 Dec.
10
Neural constraints on learning.学习中的神经限制
Nature. 2014 Aug 28;512(7515):423-6. doi: 10.1038/nature13665.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验