Lindeberg Tony
Computational Brain Science Lab, Division of Computational Science and Technology, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
Biol Cybern. 2025 Jun 18;119(2-3):15. doi: 10.1007/s00422-025-01014-4.
When observing the surface patterns of objects delimited by smooth surfaces, the projections of the surface patterns to the image domain will be subject to substantial variabilities, as induced by variabilities in the geometric viewing conditions, and as generated by either monocular or binocular imaging conditions, or by relative motions between the object and the observer over time. To first order of approximation, the image deformations of such projected surface patterns can be modelled as local linearizations in terms of local 2-D spatial affine transformations. This paper presents a theoretical analysis of relationships between the degrees of freedom in 2-D spatial affine image transformations and the degrees of freedom in the affine Gaussian derivative model for visual receptive fields. For this purpose, we first describe a canonical decomposition of 2-D affine transformations on a product form, closely related to a singular value decomposition, while in closed form, and which reveals the degrees of freedom in terms of (i) uniform scaling transformations, (ii) an overall amount of global rotation, (iii) a complementary non-uniform scaling transformation and (iv) a relative normalization to a preferred symmetry orientation in the image domain. Then, we show how these degrees of freedom relate to the degrees of freedom in the affine Gaussian derivative model. Finally, we use these theoretical results to consider whether we could regard the biological receptive fields in the primary visual cortex of higher mammals as being able to span the degrees of freedom of 2-D spatial affine transformations, based on interpretations of existing neurophysiological experimental results.
在观察由光滑表面界定的物体的表面图案时,由于几何观察条件的变化、单眼或双眼成像条件的影响,或者物体与观察者之间随时间的相对运动,表面图案在图像域中的投影会出现很大的变化。在一阶近似下,这种投影表面图案的图像变形可以用局部二维空间仿射变换的局部线性化来建模。本文对二维空间仿射图像变换的自由度与视觉感受野的仿射高斯导数模型的自由度之间的关系进行了理论分析。为此,我们首先描述了二维仿射变换在乘积形式上的一种规范分解,它与奇异值分解密切相关,并且以封闭形式给出,揭示了在(i)均匀缩放变换、(ii)全局旋转的总量、(iii)互补的非均匀缩放变换以及(iv)相对于图像域中首选对称方向的相对归一化方面的自由度。然后,我们展示了这些自由度与仿射高斯导数模型中的自由度是如何相关的。最后,基于对现有神经生理学实验结果的解释,我们利用这些理论结果来考虑是否可以将高等哺乳动物初级视觉皮层中的生物感受野视为能够涵盖二维空间仿射变换的自由度。