Li Hang-Fei, Liu Jiashun, Geng Sunyingyue, Sun Tao, Lv Ziyu, Zhai Yongbiao, Zhou Ye, Han Su-Ting
College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China.
Adv Mater. 2025 Aug 5:e08342. doi: 10.1002/adma.202508342.
Implementing Leaky Integrate-and-Fire (LIF) neurons in hardware is poised to enable the creation of efficient, low-power spiking neural networks (SNNs). This is attributed to the ability of LIF neurons to mimic the rapid response and sensitivity of biological neurons, thereby reducing unnecessary computational resources. The fixed firing frequency of conventional LIF neurons limits their adaptability to complex, dynamic environments. Existing variable-frequency LIF neurons often require additional circuitry, which increases system complexity. In this study, a 2D-3D organic-inorganic hybrid perovskites (OHPs) memristor is presented, incorporating 2D passivation of methylammonium lead iodide (MAPbI) with phenylethylammonium iodide (PEAI). The introduction of the 2D layer increases the migration energy barrier and restricts the diffusion of ions, thus enabling the modulation of the current decay and light responsivity. By leveraging the tunable decay and wavelength selectivity of the memristor, a light-induced sensitized neuron (LISN) with an enhanced firing frequency is developed using a fundamental circuit design. Furthermore, LISN, which exhibits improved temporal processing and long-term dependency management, are integrated into sensitized spiking neural networks (SSNNs) to demonstrate their superior classification capabilities. This study underscores the potential of LISN-based neuromorphic systems in visual information processing and offers new insights for applications in complex scenarios.
在硬件中实现泄漏积分发放(LIF)神经元有望促成高效、低功耗的脉冲神经网络(SNN)的创建。这归因于LIF神经元能够模拟生物神经元的快速响应和敏感性,从而减少不必要的计算资源。传统LIF神经元的固定发放频率限制了它们对复杂动态环境的适应性。现有的可变频率LIF神经元通常需要额外的电路,这增加了系统复杂性。在本研究中,提出了一种二维-三维有机-无机杂化钙钛矿(OHP)忆阻器,其中用碘化苯乙铵(PEAI)对甲基碘化铅(MAPbI)进行二维钝化。二维层的引入增加了迁移能垒并限制了离子扩散,从而实现了对电流衰减和光响应性的调制。通过利用忆阻器的可调衰减和波长选择性,使用基本电路设计开发了一种具有增强发放频率的光致敏化神经元(LISN)。此外,具有改进的时间处理和长期依赖性管理能力的LISN被集成到敏化脉冲神经网络(SSNN)中,以展示其卓越的分类能力。本研究强调了基于LISN的神经形态系统在视觉信息处理中的潜力,并为复杂场景中的应用提供了新的见解。