Chaves Cleber J N, Carnaval Ana C, Leal Bárbara S S, Santos Jessie P, Monteiro Erison C S, Palma-Silva Clarisse
Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.
City College of New York, Biology Department, New York, New York, USA.
Glob Chang Biol. 2025 Aug;31(8):e70399. doi: 10.1111/gcb.70399.
Dispersal ability is a key factor in determining a species' realized niche. However, it remains unclear whether dispersal ability directly, indirectly, or neutrally affects environmental specialization and species' tolerance ranges. Here, we investigate whether, and how, dispersal ability shapes both the realized and fundamental niches. Focusing on plants, invertebrates, and vertebrates in the topographically complex Atlantic Rainforest-one of the world's top biodiversity hotspots-we also assess how dispersal ability correlates with species' range shifts in response to climate change. Our findings indicate that high-dispersal species exhibit broader thermal tolerances compared to low-dispersal taxa, which are often restricted to higher elevations. Projected across geographic space, these data forecast a concerning scenario for species with limited dispersal abilities-particularly low-dispersal ectotherms-which are expected to face the highest risks of local extinction, even under the milder climate projections for the end of the 21st century. In contrast, species with broader thermal tolerances and higher dispersal capacities are expected to undergo reduced range shifts in response to climate change, particularly under the milder climate projection. Therefore, while the milder projections already indicate high extinction rates in the highlands, the warmest future scenario exacerbates this trend by predicting a substantial influx of high-dispersal species moving upslope (and southward) that are also expected to be locally affected by climate change. These upward movements are expected to negatively affect native communities closely tied to the forest's mountaintop ecosystems. Given the rapid habitat conversion affecting this and similar landscapes globally, we emphasize the importance of prioritizing low-dispersal species in biodiversity management. Our results highlight the critical role of dispersal ability in species' resilience to ongoing climate warming, especially in biodiversity-rich but threatened regions like the Atlantic Rainforest.
扩散能力是决定一个物种实际生态位的关键因素。然而,目前尚不清楚扩散能力是直接、间接还是中性地影响环境特化和物种的耐受范围。在这里,我们研究扩散能力是否以及如何塑造实际生态位和基础生态位。以地形复杂的大西洋雨林(世界顶级生物多样性热点地区之一)中的植物、无脊椎动物和脊椎动物为研究对象,我们还评估了扩散能力如何与物种因气候变化而发生的范围变化相关联。我们的研究结果表明,与低扩散类群相比,高扩散物种表现出更广泛的热耐受性,低扩散类群通常局限于较高海拔地区。将这些数据投射到地理空间中,可以预测扩散能力有限的物种,尤其是低扩散变温动物,将面临令人担忧的局面,即使在21世纪末较为温和的气候预测下,它们也面临着当地灭绝的最高风险。相比之下,热耐受性更广泛、扩散能力更高的物种预计对气候变化的范围变化将减少,尤其是在较为温和的气候预测下。因此,虽然较为温和的预测已经表明高地的灭绝率很高,但最温暖的未来情景会加剧这一趋势,因为预测高扩散物种将大量涌入上坡地区(以及向南),这些物种预计也会受到气候变化的局部影响。这些向上移动预计会对与森林山顶生态系统紧密相连的本地群落产生负面影响。鉴于全球范围内影响这片以及类似景观的栖息地迅速转变,我们强调在生物多样性管理中优先考虑低扩散物种的重要性。我们的研究结果凸显了扩散能力在物种应对持续气候变暖的恢复力中的关键作用,尤其是在像大西洋雨林这样生物多样性丰富但受到威胁的地区。