Suppr超能文献

根系分泌物可保护根际免受水分胁迫。

Root exudates protect rhizosphere from water stress.

作者信息

Bhattacharyya Ankita, Pablo Clint D, Mavrodi Olga V, Flynt Alex S, Weller David M, Thomashow Linda S, Mavrodi Dmitri V

机构信息

School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, USA.

Department of Plant Pathology, Washington State University, Pullman, Washington, USA.

出版信息

Appl Environ Microbiol. 2025 Aug 5:e0076825. doi: 10.1128/aem.00768-25.

Abstract

Arid and semi-arid regions, which account for over 40% of global land area, are affected by fluctuations in temperatures and rainfall. In these environments, plants recruit beneficial rhizosphere microorganisms to mitigate stress and enhance survival. This study investigates the molecular mechanisms by which 2-79, a rhizobacterium associated with wheat grown in arid regions, adapts to water stress through its interaction with root exudates. We found that water-stressed wheat root exudates contain elevated levels of choline and glycine betaine, which serve as osmoprotectants for 2-79. Exposure to these exudates upregulated genes involved in the uptake and catabolism of these quaternary ammonium compounds (QACs), enhancing the bacterium's ability to cope with osmotic stress. Mutants lacking QAC transporters displayed reduced growth under osmotic stress, highlighting the importance of these pathways in rhizosphere competence. Furthermore, the study revealed that 2-79 also produces biofilms containing protective exopolysaccharides, such as alginate and Psl, which aid in stress resilience. Overall, our findings provide insights into how root exudates shape bacterial adaptation to the water-stressed rhizosphere and highlight the role of QAC metabolism and biofilm formation in microbial survival and plant-microbe interactions under drought conditions.IMPORTANCEThis study advances our understanding of plant-microbe interactions in water-stressed environments by revealing how rhizobacteria adapt to osmotic stress through metabolic responses to plant-derived exudates. The utilization of compatible solutes such as choline and glycine betaine, which are abundant in water-stressed plants, contributes strongly to microbial survival and colonization of the dryland rhizosphere. By uncovering the molecular mechanisms underlying this adaptation, including the upregulation of QAC transporters and biofilm formation, the study highlights the potential to leverage beneficial microbes in sustainable agricultural practices. Understanding these interactions offers valuable insights for improving drought resilience in crops and developing microbiome-based strategies to enhance plant productivity in water-limited conditions.

摘要

干旱和半干旱地区占全球陆地面积的40%以上,受到气温和降雨波动的影响。在这些环境中,植物会招募有益的根际微生物来减轻压力并提高存活率。本研究调查了2-79(一种与干旱地区种植的小麦相关的根际细菌)通过与根系分泌物相互作用适应水分胁迫的分子机制。我们发现,水分胁迫的小麦根系分泌物中胆碱和甘氨酸甜菜碱水平升高,它们作为2-79的渗透保护剂。暴露于这些分泌物会上调参与这些季铵化合物(QACs)摄取和分解代谢的基因,增强细菌应对渗透胁迫的能力。缺乏QAC转运蛋白的突变体在渗透胁迫下生长减少,突出了这些途径在根际竞争力中的重要性。此外,研究还表明,2-79还会产生含有保护性胞外多糖(如藻酸盐和Psl)的生物膜,有助于增强抗逆性。总体而言,我们的研究结果揭示了根系分泌物如何塑造细菌对水分胁迫根际的适应性,并突出了QAC代谢和生物膜形成在干旱条件下微生物存活及植物-微生物相互作用中的作用。重要性本研究通过揭示根际细菌如何通过对植物来源分泌物的代谢反应适应渗透胁迫,推进了我们对水分胁迫环境中植物-微生物相互作用的理解。水分胁迫植物中丰富的胆碱和甘氨酸甜菜碱等相容性溶质的利用,对微生物在旱地根际的存活和定殖有很大贡献。通过揭示这种适应性的分子机制,包括QAC转运蛋白的上调和生物膜形成,该研究突出了在可持续农业实践中利用有益微生物的潜力。了解这些相互作用为提高作物的抗旱能力和制定基于微生物群落的策略以在水分有限条件下提高植物生产力提供了有价值的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验