Liu Shangxuan, Ishfaq Muhammad, Yang Songlin, Guo Yunlong, Wang Yan, Wang Qiuhong, Song Baiquan
College of Advanced Agriculture and Ecological Environment, National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education &Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
Plant Physiol Biochem. 2025 Aug 3;229(Pt A):110322. doi: 10.1016/j.plaphy.2025.110322.
Boron (B)-efficient varieties are more capable of thriving in low-B conditions, decrease the depletion of B ore resources and reduce the likelihood of environmental contamination caused by the excessive B fertilizer inputs. However, how B-efficient beets influence soil microbiome and adapt to a B-deficient environment remain largely enigmatic. This study examines the relationship between the rhizosphere microbiome and root metabolomics using beet B-efficient (KWS1197) and B-inefficient (KWS0143) varieties. Results showed that the amount of root exudates released by B-efficient sugarbeet varieties was higher under B deficiency, and their root growth was less adversely affected by B-deficiency stress compared to B-inefficient varieties. In B-deficient environments, the relative abundance of nucleosides and nucleotides, organic 1,3-dipolar compounds, and macrolides and analogues increased in B-efficient varieties by 2.08 %, 4.86 %, and 4.47 %, respectively. In contrast, these three root exudates of B-inefficient sugarbeet varieties decreased by 3.55 %, 3.45 %, and 6.02 %. The expression of differentially expressed metabolites in B-efficient varieties increased by 46.43 %. Key differentially expressed metabolic pathways were significantly enriched, including ABC transporters, arginine, and proline metabolism biosynthesis. Notably, myristic acid significantly influenced rhizosphere soil microorganisms. Overall, B-efficient varieties mitigate B-deficiency stress by activating their antioxidant mechanisms, plant hormone signaling, and amino acid biosynthesis. These adaptations enable B-efficient sugarbeet varieties to recruit a dominant community of rhizosphere soil microorganisms (such as Gemmatimonadota, Basidiomycota, etc) thereby protecting sugarbeet from B-deficiency stress. Together, these findings enhance our understanding of plant and soil microorganisms' interaction, offering theoretical background for the use of B-efficient varieties in B-limited farming practices, and promoting sustainable agricultural practices.
硼(B)高效品种更能在低硼条件下茁壮成长,减少硼矿资源的消耗,并降低因过量施用硼肥而造成环境污染的可能性。然而,硼高效甜菜如何影响土壤微生物群落以及如何适应缺硼环境在很大程度上仍不清楚。本研究使用甜菜硼高效品种(KWS1197)和硼低效品种(KWS0143)研究了根际微生物群落与根系代谢组学之间的关系。结果表明,在缺硼条件下,硼高效甜菜品种释放的根系分泌物量更高,与硼低效品种相比,它们的根系生长受缺硼胁迫的负面影响更小。在缺硼环境中,硼高效品种中核苷和核苷酸、有机1,3 - 偶极化合物以及大环内酯及其类似物的相对丰度分别增加了2.08%、4.86%和4.47%。相比之下,硼低效甜菜品种的这三种根系分泌物分别减少了3.55%、3.45%和6.02%。硼高效品种中差异表达代谢物的表达增加了46.43%。关键的差异表达代谢途径显著富集,包括ABC转运蛋白、精氨酸和脯氨酸代谢生物合成。值得注意的是,肉豆蔻酸对根际土壤微生物有显著影响。总体而言,硼高效品种通过激活其抗氧化机制、植物激素信号传导和氨基酸生物合成来减轻缺硼胁迫。这些适应性使硼高效甜菜品种能够招募根际土壤微生物的优势群落(如芽单胞菌门、担子菌门等),从而保护甜菜免受缺硼胁迫。这些发现共同增进了我们对植物与土壤微生物相互作用的理解,为在硼限制的耕作实践中使用硼高效品种提供了理论背景,并促进了可持续农业实践。