Wang Yan, Zhang Yuan, Zuo Yingfeng, Zhao Dawei, Wu Yiqiang
College of Materials and Energy, Central South University of Forestry and Technology, Changsha, 410004, Hunan, People's Republic of China.
Key Laboratory On Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, Liaoning, People's Republic of China.
Nanomicro Lett. 2025 Aug 5;18(1):19. doi: 10.1007/s40820-025-01867-1.
Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature. Conventional biomass-derived cellulose frameworks face a fundamental trade-off between haze and transparency, coupled with impractical thicknesses (≥ 1 mm). Inspired by squid's skin-peeling mechanism, this work develops a peroxyformic acid (HCOOOH)-enabled precision peeling strategy to isolate intact 10-µm-thick bamboo green (BG) frameworks-100 × thinner than wood-based counterparts while achieving an unprecedented optical performance (88% haze with 80% transparency). This performance surpasses delignified biomass (transparency < 40% at 1 mm) and matches engineered cellulose composites, yet requires no energy-intensive nanofibrillation. The preserved native cellulose I crystalline structure (64.76% crystallinity) and wax-coated uniaxial fibril alignment (Hermans factor: 0.23) contribute to high mechanical strength (903 MPa modulus) and broadband light scattering. As a light-management layer in polycrystalline silicon solar cells, the BG framework boosts photoelectric conversion efficiency by 0.41% absolute (18.74% → 19.15%), outperforming synthetic anti-reflective coatings. The work establishes a scalable, waste-to-wealth route for optical-grade cellulose materials in next-generation optoelectronics.
纤维素框架因其卓越的光散射能力和可持续性,已成为光管理领域颇具前景的材料。传统的生物质衍生纤维素框架在雾度和透明度之间面临着基本的权衡,同时还存在不切实际的厚度(≥1毫米)。受鱿鱼脱皮机制的启发,这项工作开发了一种过氧甲酸(HCOOOH)驱动的精确剥离策略,以分离出完整的10微米厚的竹青(BG)框架,其厚度仅为木质对应物的100分之一,同时实现了前所未有的光学性能(雾度88%,透明度80%)。这一性能超越了脱木质生物质(1毫米时透明度<40%),并与工程纤维素复合材料相当,但无需耗能的纳米纤维化过程。保留的天然纤维素I晶体结构(结晶度64.76%)和蜡包覆的单轴纤维排列(赫尔曼因子:0.23)有助于实现高机械强度(模量903兆帕)和宽带光散射。作为多晶硅太阳能电池中的光管理层,BG框架将光电转换效率绝对提高了0.41%(从18.74%提高到19.15%),优于合成抗反射涂层。这项工作为下一代光电子学中的光学级纤维素材料建立了一条可扩展的变废为宝途径。