Suppr超能文献

基于实时三维超声-CT融合的半自动穿刺机器人系统:临床评估

Real-time 3D US-CT fusion-based semi-automatic puncture robot system: clinical evaluation.

作者信息

Nakayama Masayuki, Zhang Bo, Kuromatsu Ryoko, Nakano Masahito, Noda Yu, Kawaguchi Takumi, Li Qiang, Maekawa Yuji, Fujie Masakatsu G, Sugano Shigeki

机构信息

Graduate School of Creative Science and Engineering, Waseda University, Tokyo, 1698555, Japan.

KYOSETO Co., Ltd, Tokyo, 1600023, Japan.

出版信息

Int J Comput Assist Radiol Surg. 2025 Aug 5. doi: 10.1007/s11548-025-03489-9.

Abstract

PURPOSE

Conventional systems supporting percutaneous radiofrequency ablation (PRFA) have faced difficulties in ensuring safe and accurate puncture due to issues inherent to the medical images used and organ displacement caused by patients' respiration. To address this problem, this study proposes a semi-automatic puncture robot system that integrates real-time ultrasound (US) images with computed tomography (CT) images. The purpose of this paper is to evaluate the system's usefulness through a pilot clinical experiment involving participants.

METHODS

For the clinical experiment using the proposed system, an improved U-net model based on fivefold cross-validation was constructed. Following the workflow of the proposed system, the model was trained using US images acquired from patients with robotic arms. The average Dice coefficient for the entire validation dataset was confirmed to be 0.87. Therefore, the model was implemented in the robotic system and applied to clinical experiment.

RESULTS

A clinical experiment was conducted using the robotic system equipped with the developed AI model on five adult male and female participants. The centroid distances between the point clouds from each modality were evaluated in the 3D US-CT fusion process, assuming the blood vessel centerline represents the overall structural position. The results of the centroid distances showed a minimum value of 0.38 mm, a maximum value of 4.81 mm, and an average of 1.97 mm.

CONCLUSION

Although the five participants had different CP classifications and the derived US images exhibited individual variability, all centroid distances satisfied the ablation margin of 5.00 mm considered in PRFA, suggesting the potential accuracy and utility of the robotic system for puncture navigation. Additionally, the results suggested the potential generalization performance of the AI model trained with data acquired according to the robotic system's workflow.

摘要

目的

传统的支持经皮射频消融(PRFA)的系统,由于所使用的医学图像存在固有问题以及患者呼吸引起的器官位移,在确保安全准确的穿刺方面面临困难。为了解决这个问题,本研究提出了一种将实时超声(US)图像与计算机断层扫描(CT)图像相结合的半自动穿刺机器人系统。本文的目的是通过一项涉及参与者的初步临床实验来评估该系统的实用性。

方法

对于使用所提出系统的临床实验,构建了基于五重交叉验证的改进U-net模型。按照所提出系统的工作流程,使用从配备机器人手臂的患者获取的US图像对模型进行训练。整个验证数据集的平均骰子系数被确认为0.87。因此,该模型被应用于机器人系统并应用于临床实验。

结果

使用配备了所开发的人工智能模型的机器人系统对五名成年男性和女性参与者进行了临床实验。在三维US-CT融合过程中,假设血管中心线代表整体结构位置,评估了来自每种模态的点云之间的质心距离。质心距离的结果显示最小值为0.38毫米,最大值为4.81毫米,平均值为1.97毫米。

结论

尽管五名参与者有不同的CP分类,并且所获得的US图像表现出个体差异,但所有质心距离均满足PRFA中考虑的5.00毫米的消融边缘,这表明机器人系统在穿刺导航方面具有潜在的准确性和实用性。此外,结果表明根据机器人系统工作流程获取的数据训练的人工智能模型具有潜在的泛化性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验