Ning Guochen, Liang Hanying, Zhang Xinran, Liao Hongen
IEEE Trans Biomed Eng. 2023 Nov;70(11):3166-3177. doi: 10.1109/TBME.2023.3279114. Epub 2023 Oct 19.
Ultrasound (US) probes scan over the surface of the human body to acquire US images in clinical vascular US diagnosis. However, due to the deformation and specificity of different human surfaces, the relationship between the scan trajectory of the skin and the internal tissues is not fully correlated, which poses a challenge for autonomous robotic US imaging in a dynamic and external-vision-free environment. Here, we propose a decoupled control strategy for autonomous robotic vascular US imaging in an environment without external vision.
The proposed system is divided into outer-loop posture control and inner-loop orientation control, which are separately determined by a deep learning (DL) agent and a reinforcement learning (RL) agent. First, we use a weakly supervised US vessel segmentation network to estimate the probe orientation. In the outer loop control, we use a force-guided reinforcement learning agent to maintain a specific angle between the US probe and the skin in the dynamic imaging processes. Finally, the orientation and the posture are integrated to complete the imaging process.
Evaluation experiments on several volunteers showed that our RUS could autonomously perform vascular imaging in arms with different stiffness, curvature, and size without additional system adjustments. Furthermore, our system achieved reproducible imaging and reconstruction of dynamic targets without relying on vision-based surface information.
Our system and control strategy provides a novel framework for the application of US robots in complex and external-vision-free environments.
在临床血管超声诊断中,超声(US)探头在人体表面扫描以获取超声图像。然而,由于不同人体表面的变形和特殊性,皮肤的扫描轨迹与内部组织之间的关系并不完全相关,这给在动态且无外部视觉的环境中进行自主机器人超声成像带来了挑战。在此,我们提出一种在无外部视觉环境下用于自主机器人血管超声成像的解耦控制策略。
所提出的系统分为外环姿态控制和内环方向控制,分别由深度学习(DL)智能体和强化学习(RL)智能体确定。首先,我们使用一个弱监督超声血管分割网络来估计探头方向。在外环控制中,我们使用一个力引导强化学习智能体在动态成像过程中保持超声探头与皮肤之间的特定角度。最后,将方向和姿态整合以完成成像过程。
对几名志愿者的评估实验表明,我们的机器人超声系统能够在具有不同刚度、曲率和尺寸的手臂上自主进行血管成像,而无需额外的系统调整。此外,我们的系统在不依赖基于视觉的表面信息的情况下,实现了对动态目标的可重复成像和重建。
我们的系统和控制策略为超声机器人在复杂且无外部视觉的环境中的应用提供了一个新颖的框架。