Skaar Jan-Eirik Welle, Haug Nicolai, Plesser Hans Ekkehard
Department of Data Science, Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.
Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway.
J Comput Neurosci. 2025 Sep;53(3):475-487. doi: 10.1007/s10827-025-00911-8. Epub 2025 Aug 5.
A model for NMDA-receptor-mediated synaptic currents in leaky integrate-and-fire neurons, first proposed by Wang (J Neurosci, 1999), has been widely studied in computational neuroscience. The model features a fast rise in the NMDA conductance upon spikes in a pre-synaptic neuron followed by a slow decay. In a general implementation of this model which allows for arbitrary network connectivity and delay distributions, the summed NMDA current from all neurons in a pre-synaptic population cannot be simulated in aggregated form. Simulating each synapse separately is prohibitively slow for all but small networks, which has largely limited the use of the model to fully connected networks with identical delays, for which an efficient simulation scheme exists. We propose an approximation to the original model that can be efficiently simulated for arbitrary network connectivity and delay distributions. Our results demonstrate that the approximation incurs minimal error and preserves network dynamics. We further use the approximate model to explore binary decision making in sparsely coupled networks.
由Wang(《神经科学杂志》,1999年)首次提出的用于漏电积分发放神经元中NMDA受体介导的突触电流的模型,已在计算神经科学中得到广泛研究。该模型的特点是,突触前神经元发放尖峰时,NMDA电导迅速上升,随后缓慢衰减。在该模型的一般实现中,允许任意的网络连接性和延迟分布,来自突触前群体中所有神经元的总NMDA电流无法以聚合形式进行模拟。对于除小型网络之外的所有网络,单独模拟每个突触的速度都极其缓慢,这在很大程度上限制了该模型仅用于具有相同延迟的全连接网络,而对于此类网络存在一种有效的模拟方案。我们提出了对原始模型的一种近似,它可以针对任意的网络连接性和延迟分布进行高效模拟。我们的结果表明,这种近似产生的误差最小,并保留了网络动态特性。我们进一步使用该近似模型来探索稀疏耦合网络中的二元决策。