Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08018, Spain.
J Neurosci. 2012 Mar 7;32(10):3366-75. doi: 10.1523/JNEUROSCI.2523-11.2012.
The ongoing activity of the brain at rest, i.e., under no stimulation and in absence of any task, is astonishingly highly structured into spatiotemporal patterns. These spatiotemporal patterns, called resting state networks, display low-frequency characteristics (<0.1 Hz) observed typically in the BOLD-fMRI signal of human subjects. We aim here to understand the origins of resting state activity through modeling via a global spiking attractor network of the brain. This approach offers a realistic mechanistic model at the level of each single brain area based on spiking neurons and realistic AMPA, NMDA, and GABA synapses. Integrating the biologically realistic diffusion tensor imaging/diffusion spectrum imaging-based neuroanatomical connectivity into the brain model, the resultant emerging resting state functional connectivity of the brain network fits quantitatively best the experimentally observed functional connectivity in humans when the brain network operates at the edge of instability. Under these conditions, the slow fluctuating (<0.1 Hz) resting state networks emerge as structured noise fluctuations around a stable low firing activity equilibrium state in the presence of latent "ghost" multistable attractors. The multistable attractor landscape defines a functionally meaningful dynamic repertoire of the brain network that is inherently present in the neuroanatomical connectivity.
大脑在休息时的持续活动,即在没有刺激和任务的情况下,其结构惊人地高度组织成为时空模式。这些时空模式被称为静息状态网络,表现出低频特征(<0.1 Hz),通常在人类被试的 BOLD-fMRI 信号中观察到。我们旨在通过大脑的全局尖峰吸引子网络建模来理解静息状态活动的起源。这种方法基于尖峰神经元和现实的 AMPA、NMDA 和 GABA 突触,为每个单独的脑区提供了一种现实的机制模型。将基于扩散张量成像/扩散谱成像的神经解剖连接整合到大脑模型中,当大脑网络处于不稳定边缘时,大脑网络的新兴静息状态功能连接在数量上最能拟合人类观察到的功能连接。在这些条件下,缓慢波动(<0.1 Hz)的静息状态网络出现在稳定的低发射活动平衡状态周围,呈现出结构化的噪声波动,同时存在潜在的“幽灵”多稳定吸引子。多稳定吸引子景观定义了大脑网络固有的、具有功能意义的动态范围,它内在存在于神经解剖连接中。